PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Closed book; 2 sides of 8.5×11 "cheat sheet."

SIGN YOUR NAME HERE:

20 multiple-choice questions, worth 4 points each, and two 10-point questions. **LECTURE** Write your answer to each question in the space to the right of that question. **SESSION** NOTE: Problems vary in difficulty. Some problems are harder than others.

$\sin\frac{\pi}{6} = \cos\frac{\pi}{3} = \frac{1}{2}; \sin\frac{\pi}{4} = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}; \sin\frac{\pi}{3} = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}; \sin\frac{\pi}{2} = \cos(0) = 1.$
For $\#1-\#3$: L=Linear and TI=Time-Invariant.
 The system y[n] = sin(3n)x[n] is: (a) L AND TI (b) L NOT TI (c) TI NOT L (d) NOT L;NOT TI (e) Can't tell
 2. The system y[n] = x[n]x[n-2] is: (a) L AND TI (b) L NOT TI (c) TI NOT L (d) NOT L;NOT TI (e) Can't tell
 3. The system y[n] = 3x[n] + 4x[n - 1] is: (a) L AND TI (b) L NOT TI (c) TI NOT L (d) NOT L;NOT TI (e) Can't tell
For #4-#6: We observe the following about an LTI system: The response to $\{\underline{1}, 1, 1\}$ is $\{\underline{2}, 1, 1, -1\}$. The response to $\{\underline{1}, 2, 3\}$ is $\{\underline{2}, 3, 4, -3\}$.
4. The response to $\{\underline{2}, 3, 4\}$ is: (a) $\{\underline{2}, 5, 7, -5\}$ (b) $\{\underline{2}, -1, 0, 0\}$ (c) $\{\underline{4}, 4, 5, -4\}$ (d) $\{\underline{10}, 9, 11, -9\}$ (e) $\{\underline{2}, 0, 0, -1\}$
5. The response to $\{\underline{5}, 7, 9\}$ is: (a) $\{\underline{2}, 5, 7, -5\}$ (b) $\{\underline{2}, -1, 0, 0\}$ (c) $\{\underline{4}, 4, 5, -4\}$ (d) $\{\underline{10}, 9, 11, -9\}$ (e) $\{\underline{2}, 0, 0, -1\}$
6. The impulse response is: (a) $\{\underline{2}, 5, 7, -5\}$ (b) $\{\underline{2}, -1, 0, 0\}$ (c) $\{\underline{4}, 4, 5, -4\}$ (d) $\{\underline{10}, 9, 11, -9\}$ (e) $\{\underline{2}, 0, 0, -1\}$
7. The response of $y[n] = x[n] + x[n-1]$ to $x[n] = \cos(\frac{\pi}{2}n)$ is: (a) $2\cos(\frac{\pi}{2}n)$ (b) $\sqrt{2}\cos(\frac{\pi}{2}n)$ (c) $\sin(\frac{\pi}{2}n)$ (d) $\sqrt{2}\cos(\frac{\pi}{2}n + \frac{\pi}{4})$ (e) $\sqrt{2}\cos(\frac{\pi}{2}n - \frac{\pi}{4})$
 8. At what frequency is the response of y[n] = x[n] + x[n - 1] zero? (a) 0 (b) π/4 (c) π/2 (d) 3π/4 (e) π
9. The convolution $\{1,2\} * \{3,4\} =$ (a) $\{5,6\}$ (b) $\{3,5,8\}$ (c) $\{3,10,8\}$ (d) $\{3,11,8\}$ (e) $\{3,8\}$
10. Continuous-time $\cos(2\pi 300t)$ is sampled every 0.001 second. The resulting discrete-time signal has the same line spectrum as which TWO of the following signals sampled every 0.001 second?

(a) $\cos(2\pi700t)$ (b) $\cos(2\pi1200t)$ (c) $\cos(2\pi1300t)$ (d) $\cos(2\pi1600t)$ (e) $2\cos(2\pi2000t)$

11. $x(t) = 2.5 \cos(2\pi 100t) + 10 \sin(2\pi 500t) + 11 \cos(2\pi 750t + \frac{\pi}{2})$ is sampled. The sampled x(t) will have only two distinct frequencies if the sampling frequency is: (a) 110 Hz (b) 200 Hz (c) 860 Hz (d) 1000 Hz (e) 1700 Hz

For #12-#14: C=Causal and S=BIBO stable. The systems are all LTI. 12. If bounded $x[n] \rightarrow \overline{|LTI|} \rightarrow \sum_{i=-\infty}^{n} (0.8)^{n-i} x[i]$, the system is: (a) C AND S (b) C NOT S (c) S NOT C (d) NOT C NOT S (e) Can't tell.

- 13. If $(\delta[n] + \delta[n-1]) \rightarrow \overline{|LTI|} \rightarrow \delta[n+1] + \delta[n] + e^{2(n-1)}u[n-1] + e^{2(n-2)}u[n-2]$, then: (a) C AND S (b) C NOT S (c) S NOT C (d) NOT C NOT S (e) Can't tell.
- 14. If $10^6 \delta[n+200] \rightarrow \overline{|LTI|} \rightarrow \cos(2\pi 0.1n)u[n-10000]$, then the system is: (a) C AND S (b) C NOT S (c) S NOT C (d) NOT C NOT S (e) Can't tell.
- 15. If $(\delta[n] + 0.5\delta[n-2]) \rightarrow \overline{|LTI|} \rightarrow \{\underline{1}, -1, 0, -0.5, -0.25\}$, the impulse response is: (a) $\{\underline{1}, 1\}$ (b) $\{\underline{1}, -1, -0.5\}$ (c) $\{\underline{1}, -1, 0, -0.5, -0.25\}$ (d) $\{\underline{1}, -1.5, 0.25, 0.125\}$ (e) $\{\underline{1}, -1, -1, -0.5\}$

16. Two LTI systems have impulse responses {1,1,-1,-1} and {0,2,4,6}. Their cascade or series connection:
(a) Has impulse response {1,3,3,5} (b) Is also LTI (c) Is not BIBO stable (d) Alters frequencies of the input (e) Has the same impulse response as their parallel connection.

- 17. A real x[n] with period=25 has DFT $X(5) = 2e^{j\pi/2}$ and X(k) = 0 for all **other** $0 \le k \le 13$. Then: (a) x[n] has a component at frequency $\pi/2$ (b) $x[n] = 2\cos(\pi n)$ (c) $x[n] = 4\cos(0.4\pi n)$ (d) $x[n] = 4\sin(0.4\pi n + \frac{\pi}{2})$ (e) $X(20) = 2e^{-j\pi/2}$
- 18. Let x[n] = cos(2π³/₂₅n) and y[n] = cos(2π⁷/₂₅n). Their correlation is:
 (a) non-zero imaginary (b) always zero (c) a nonzero multiple of ^{2π}/₂₅ (d) product of the powers of x[n] and y[n] (e) the sum of DFT coefficients of x[n] and y[n]
- 19. Let y[n] = x[n-3] for all *n*. Then their DFTs X(k) and Y(k) are related by: (a) Y(k) = X(k-3) (b) $Y(k) = e^{j2\pi 3k/25}X(k)$ (c) |Y(k)| > |X(k)|(d) $Y(k) = e^{-j2\pi 3k/25}X(k)$ (e) y[n] no longer has period 25
- 20. $x[n] = \cos(2\pi \frac{10}{25}n)$ is input into a LTI system with frequency response $1+0.5e^{j\omega}+1e^{j2\omega}$. The frequency of the output is: (a) 0.8π (b) $1+0.5e^{j2\pi 10/25}+1e^{j4\pi 10/25}$ (c) $|1+0.5e^{0.8\pi}+e^{1.6\pi}|$ (d) 2.5 (e) 0

CONTINUED ON THE NEXT PAGE!

(10) 21. The continuous-time signal $\cos(2\pi 1000t) + 2\cos(2\pi 2000t)$ is sampled at 3500 Hz. Sketch **carefully** the line spectrum of the **sampled** signal. Watch line heights!

-5	- 4	- 3	-2	- 1	0	1	2	3	4	5	f (kHz)

(10) 22. Let $x[n] \to \overline{|h[n]|} \to y[n]$. Prove if x[n] is periodic with period N, then y[n] is also periodic with period N.

•