1.	A. $2e^{j\pi/3} - \sqrt{6}e^{j\pi/4} = [2\cos(\pi/3) + j2\sin(\pi/3)] - [\sqrt{6}\cos(\pi/4) + j\sqrt{6}\sin(\pi/4)] = [1 + j\sqrt{3}] - [\sqrt{3} + j\sqrt{3}] = 1 - \sqrt{3}$. Add complex numbers in rectangular form.
2.	E. $[\sqrt{3} + j] + [-\sqrt{3} + j] - 2j = 0$. Easier: draw diagram.
3.	B. $(1+j)e^{j\theta} = \sqrt{2}e^{j(\pi/4+\theta)} \rightarrow \theta = -\pi/4$ or $3\pi/4$. Multiply complex in polar form.
4.	C. $M(x) = \frac{1}{2} \int_0^2 t dt = 1.$
5.	E. $M(x^2) = \frac{1}{2} \int_0^2 t^2 dt = 4/3.$
6.	C. $C(x, x^2) = \int_0^2 (t)(t^2) dt = 4.$
7.	A. Shift $[0, 2]$ by 1, then scale by 2. OR: Scale by 2 and shift by $1/2$.
	D. Least common multiple of 6 and 9 is 18. OR: GCD of $\frac{1}{6}$ and $\frac{1}{9}$ is $\frac{1}{18}$. Accept E. since 54 is "a period" according to course lecture notes.
9.	C. $0.075 = 75/1000 = 3/40$ lowest terms \rightarrow period=denominator=40.
10.	C. Converting to phasors $\rightarrow 2e^{j\pi/3} - \sqrt{6}e^{j\pi/4} + \sqrt{3}e^{j0} = 1$ (see #1).
11.	D. Converting to phasors $\rightarrow 2e^{j\pi/6} + 2e^{j5\pi/6} + 3e^{-j\pi/2} = -j$ (see #2).
12.	D. $\cos^2(7t) = \frac{1}{2} + \frac{1}{2}\cos(14t) \rightarrow 0, \pm 14$. Didn't have to remember trig. id.
13.	C. by definition. Accept B. since course lecture notes wrong (p. 3a.20).
14.	E. Using Parseval's thm., $4^2 + 3^2 + 5^2 + 3^2 + 4^2 = 75$.
15.	E. Since 1 Hz= $2\pi > 2 \frac{\text{RADIAN}}{\text{SECOND}}$, nothing gets removed.
16.	C. $C(x_i, y_j) = 0$ for integers i, j from lab and lecture notes. Only C (0=0) true.
17.	A. $X[0] = 0$ by inspection; A and only A is true.
18.	A. $X[0] = 0$ by inspection; $X_{[19]} \neq 0$ easily found.
19.	E. $x^*[n] = e^{-j2\pi nk/N}$. Only E. is true.
20.	B. Also accept D. even though fundamental period is 50.
21.	This was supposed to be $x(t)$ not $x[n]$. A few bright students noted that $x[n] = 13!$
22.	$C(x,y) = \int_0^T e^{j2\pi(k-a)t/T} dt = \frac{T}{j2\pi(k-a)} [e^{j2\pi(k-a)} - 1] = 0 \text{ only if } e^{j2\pi(k-a)} = 1$ $\to (k-a) \text{ is an integer} \to a \text{ is an integer}.$
E	XAM SCORES BY LECTURE SECTION-SEE WHERE YOU STAND

- **#1:** 100, 97, 96⁵, 94, 92⁴, 91², 88³, 85⁵, 84⁴, 83, 82², 81², 80⁶, 78, 77, 76⁷, 72², 71, 69, 65², 64², 61 60, 59, 58², 57, 56², 55, 54², 53³, 44, 43, 41, 28. **Mean: 75.1. #:72.**