1. B. $\sin(3n)$ just multiplies $x[n]$. Don't confuse with $\sin(3x[n])$. But $y[n-1] = \sin(3n-3)x[n-1] \neq \sin(3n)x[n-1]$, so NOT TI.
2. C. $y[n] = x[n]x[n-2] \rightarrow y[n-D] = x[n-D]x[n-2-D]$ for any D , so TI. Doubling input quadruples output, so NOT linear.
3. A. Constant coefficients and delays everywhere, so LTI.
4. C. $\{2,3,4\} = \{1,1,1\} + \{1,2,3\} \rightarrow \overline{ LTI } \rightarrow \{2,1,1,-1\} + \{2,3,4,-3\}.$
5. D. $\{5,7,9\} = 3\{1,1,1\} + 2\{1,2,3\} \rightarrow \overline{ LTI } \rightarrow 3\{2,1,1,-1\} + 2\{2,3,4,-3\}.$
6. B. $\{0, 1, 2\} = \{1, 2, 3\} - \{1, 1, 1\} \rightarrow \overline{ LTI } \rightarrow \{2, 3, 4, -3\} - \{2, 1, 1, -1\} = \{0, 2, 3, -2\}$
Using time-invariance (new wrinkle), $\{1, 2, 0\} \rightarrow \overline{[LTI]} \rightarrow \{2, 3, -2, 0\}$.
$\{0,0,3\} = \{1,2,3\} - \{1,2,0\} \rightarrow \overline{ LTI } \rightarrow \{2,3,4,-3\} - \{2,3,-2,0\} = \{0,0,6,-3\}.$
$\{1,0,0\} \rightarrow \overline{ LTI } \rightarrow \{2,-1\} \rightarrow B. OR: Try all five answers.$
7. E. $H(e^{j\pi/2}) = 1 + e^{-j\pi/2} = 1 - j = \sqrt{2}e^{-j\pi/4} \to \sqrt{2}\cos(\frac{\pi}{2} - \frac{\pi}{4}).$
8. E. $H(e^{j\omega}) = 1 + e^{-j\omega} = 0$ if $\omega = \pi$. OR: $x[n] = \cos(\pi n) = (-1)^n \to y[n] = 0$.
9. C. $\{(1)(3), (1)(4) + (2)(3), (2)(4)\} = \{3, 10, 8\}$. Either you got it or not.
10. C. At $t = 0.001n$, periodic $\rightarrow \cos(2\pi 300t) = \cos(0.6\pi n) = \cos(2.6\pi n) = \cos(2\pi 1300t)$ A. Even $\rightarrow = \cos(-0.6\pi n) = \cos(1.4\pi n) = \cos(2\pi 700t)$.
11. B. At $t = n/200$, get $2.5 \cos(\pi n) + 10 \sin(5\pi n) + 11 \cos(7.5\pi n + \frac{\pi}{2})$. Components at $\omega = \pi, 7.5\pi = -0.5\pi$ only, since $\sin(5\pi n) = 0$.
12. A. $h[n] = (0.8)^n u[n]$ (note upper limit of sum), so C AND S.
13. D. Causal input \rightarrow noncausal output ($\delta[n+1]$) and $e^{2(n-1)} \rightarrow \infty \rightarrow \text{NOT C NOT S}$.
14. B. Since LTI, $h[n] = 10^{-6} \cos(2\pi 0.1(n-200))u[n-10200] = 0$ for $n < 0$, so C. But $\sum_{n=10200}^{\infty} \cos(2\pi 0.1(n-200)) \to \infty$, so NOT S.
15. B. Input has length=3; output has length= $5=3+3-1 \rightarrow h[n]$ has length=3 or infinity. So it <i>has</i> to be B. OR: Try each one; only B works.
16. B. Can IMMEDIATELY eliminate all but B,D ($h[n]$ has wrong length). B true.
17. E. Real $x[n]$ with period= $25 \rightarrow X(20) = X(5)^* \rightarrow E$ true. Don't confuse phase $\pi/2$ in $e^{j\pi/2}$ with frequency $2\pi \frac{5}{25} = 0.4\pi$. $x[n] = 2e^{j\pi/2}e^{j2\pi \frac{5\pi}{25}} + 2e^{-j\pi/2}e^{j2\pi \frac{20\pi}{25}} = 4\cos(0.4\pi n + \frac{\pi}{2}).$
18. B. $\cos(2\pi \frac{m}{N})$ and $\cos(2\pi \frac{n}{N})$ have correlation=0 if $m \neq n$. $\cos(2\pi \frac{m}{N})$ and $\sin(2\pi \frac{n}{N})$ have correlation=0 even if $m = n$. We're going to keep asking this correlation question until you all get it right!
19. D. Only D is true (note $ Y(k) = X(k) $). Watch sign (B vs. D).

- 21. Scaling of frequency axis (even by 3500) was only -1 or -2. Looking for the following:
 (a) Spectrum of sampled signal is *periodic*; (b) 2000 Hz sinusoid is *aliased*.
 Scoring for various possible answers is shown below.
- 22. $y[n+N] = \sum h[i]x[n+N-i] = \sum h[i]x[n-i] = y[n]$ since x[n] is periodic. Hence y[n] is periodic with period N. There are other ways to do this.

EXAM SCORES BY LECTURE SECTION–SEE WHERE YOU STAND

- **#1:** 92, 91, 90², 88³, 86, 84², 83², 82, 79, 78², 77², 76, 74, 73³, 71⁴, 70⁴, 69², 67², 66, 65⁶, 64², 63³, 62², 60, 58, 56², 54, 53, 51², 49², 48, 46, 45, 44, 43, 41, 40, 34, 32, 30, 29, 28². **Mean: 64.5 #: 72.**
- **#2:** 96, 93, 92⁴, 90², 89³, 88, 87, 86², 85⁵, 81³, 80, 78, 76², 75⁴, 74², 73, 72, 71², 69⁵, 68⁴, 67², 66², 65 64⁴, 62, 61³, 60², 59³, 58³, 57, 56, 55, 54, 53, 52², 51, 50, 49², 48², 47, 46², 45, 41, 32, 31², 28, 27. **Mean: 67.0 #: 90.** (Excludes two taking late.)

Comments: Well, we *did* promise you that we would make this exam harder! We were true to our word. Recall it's how you compare to everyone else that counts.

Biggest surprise: Trouble with linearity and causality (supposed to be easy). If an input zero before time T results in an output having a nonzero value before T, then the system HAS to be noncausal, since it reacted to the input before it was there!

