Instructions:

- Answer on this questionnaire
- Print your name
- Sign the pledge below
- Closed book and notes
- One 8 $1/2 \ge 11$ sheet of paper allowed
- Calculators allowed
- Read the questions carefully.
- Problems 1 to 10 are multiple-choice. Each has 7 points. No partial credit will be given.
- In Problems 11 and 12, partial credit will be given. You must show your derivations/calculations to get full credit.

Name:

PLEDGE: I have neither given nor received any aid on this exam, nor have I concealed any violations of the Honor Code. SIGNATURE:

DO NOT TURN THIS PAGE OVER UNTIL TOLD TO DO SO! Good Luck!

(1)	(a)	(b)	(c)	(d)	(e)
(2)	(a)	(b)	(c)	(d)	(e)
(3)	(a)	(b)	(c)	(d)	(e)
(4)	(a)	(b)	(c)	(d)	(e)
(5)	(a)	(b)	(c)	(d)	(e)
(6)	(a)	(b)	(c)	(d)	(e)
(7)	(a)	(b)	(c)	(d)	(e)
(8)	(a)	(b)	(c)	(d)	(e)
(9)	(a)	(b)	(c)	(d)	(e)
(10)	(a)	(b)	(c)	(d)	(e)
Subtotal					
(11)					
(12)					
Total					

Mark your answers for Problems (1)–(10)

- (1) The normalized correlation $C_N(x, y)$ of the following two signals with the support interval [0, 1] is

 - (a) -1(b) $-\frac{1}{\sqrt{2}}$ (c) $\frac{1}{\sqrt{2}}$ (d) 1 (e) None

 - None of the above

(2) The average power of $x(t) = Ae^{j(\omega_0 t + \phi)}$ over the interval $[0, T_0]$, where A > 0 and $\omega_0 = \frac{2\pi}{T_0}$, is

- $\begin{array}{c} A^2\cos^2\phi\\ A^2 \end{array}$
- (a) (b)
- (c)
- $\begin{array}{c} A^2 T_0 \\ A^2 |\cos \phi| \end{array}$ (d)
- (e) None of the above

(3) For signal x(t) given below, the signal $y(t) = 2x(-\frac{1}{2}t+1)$ looks like

(e) None of the above

(4) The distribution of signal values of x(t) over the support interval [-1, 1] looks like

(e) None of the above

(5) The following graph of a signal is best described by

- (a) (b)
- (c)
- (d)
- $2\cos(2\pi 2t \frac{\pi}{4})$ $2\cos(2\pi 4t \frac{\pi}{4})$ $2\cos(2\pi 2t + \frac{\pi}{4})$ $2\cos(2\pi 4t + \frac{\pi}{4})$ $2\cos(2\pi 4t + \frac{\pi}{10})$ (e)

(6) The signal

$$\Re\left\{3e^{j(6t+\frac{\pi}{3})} + j4e^{j(6t+\frac{\pi}{2})}\right\}$$

equals

- $2\sqrt{2}\cos(6t \frac{\pi}{4})$ (a)

- (b) $2\sqrt{2}\cos(6t + \frac{\pi}{4})$ (c) $2\sqrt{2}\cos(6t \frac{3\pi}{4})$ (d) $2\sqrt{2}\cos(6t + \frac{3\pi}{4})$
- None of the above (e)
- (7) The spectrum below describes signal

- (a) $5 + 5\cos(2\pi 100t \frac{\pi}{3}) + 2\cos(2\pi 120t)$ (b) $5 + 10\cos(2\pi 100t \frac{\pi}{3}) + 4\cos(2\pi 120t)$ (c) $5 + 5\sin(2\pi 100t \frac{\pi}{3}) + 2\sin(2\pi 120t)$ (d) $5 + 10\sin(2\pi 100t \frac{\pi}{3}) + 4\sin(2\pi 120t)$
- (e) None of the above
- (8) A real signal x(t) with the following spectrum

$$C_0 = 10, \quad C_1 = 5e^{j\pi/2}, \quad C_2 = 1e^{j\pi},$$

and $C_k = 0$ for $k \ge 3$, has the average power of

- (a) 16
- (b) 100
- 126(c)
- (d) 152
- None of the above (e)

- (9) Given a periodic signal x(t) with the fundamental period T_0 and $y(t) = e^{j2\pi \frac{k}{T_0}t}$, the unnormalized correlation C(x, y) over the interval $\left[-\frac{T_0}{2}, \frac{T_0}{2}\right]$ is given by
 - (a)
 - $\frac{C_k T_0}{C_k T_0/2}$ (b)
 - (c) $|C_k|T_0$
 - $|C_k|T_0/2$ (d)
 - Insufficient information given (e)

where C_k is the Fourier coefficient of signal x(t) at frequency $\frac{k}{T_0}$ Hz.

(10) For a real signal with the Fourier coefficient $C_{-4} = 5e^{j\frac{\pi}{2}}$, the value of C_4 is

- $5e^{j\frac{\pi}{2}}$ (a)
- $-5e^{j\frac{\pi}{2}}$ $5e^{-j\frac{\pi}{2}}$ (b)
- (c)
- $-5e^{-j\frac{\pi}{2}}$ (d)
- Insufficient information given (e)

(11) (15 points) Simplify the following signal in the standard sinusoidal form.

$$x(t) = -4\cos(\omega_0 t) + 5\sin(\omega_0 t - \frac{\pi}{3}).$$

(12) (20 points) Find and plot the (two-sided) spectrum of the following periodic signal

$$x(t) = t - \pi, \quad 0 \le t \le 2\pi.$$

Note that
$$\int (at+b)e^{ct} dt = (at+b)e^{ct}/c - ae^{ct}/c^2 + K.$$