DSP First ERRATA. These are mostly typos, double words, misspellings, etc. Underline is not used in the book, so I've used it to denote changes. JMcClellan, February 22, 2002

1. page xviii, line 23: ... conventional. Part of the reason for this ...
2. page xix, line 26: ...the contributions of our editor,...
3. page 5, after Eq. (1.2.2): ...that the output signal is always nonnegative and the large signal values...
4. page 6, Figure 1.5: The output of the block diagram should be labeled as $y(t)=\mathcal{T}\{x(t)\}$
5. page 8 , line 2: ...that writes the number $x[n]$ onto the optical disc. (no hat on $x$ in $x[n]$.)
6. page 13 , Table 2.1: last entry: $\cos \left[2 \pi\left(k+\frac{1}{2}\right)\right]=-1$
7. page 17, footnote 4: The unit hertz (abbreviated Hz) was adopted in 1933...
8. page 20, line 8: ...does not change the value of the cosine.
9. page 56 , Eq. (3.2.8) is missing $\frac{1}{2}$ in four places:

$$
x(t)=\frac{5}{2} e^{j 400 \pi t}+\frac{1}{2} e^{j 440 \pi t}+\frac{1}{2} e^{j 360 \pi t}+\frac{5}{2} e^{-j 400 \pi t}+\frac{1}{2} e^{-j 440 \pi t}+\frac{1}{2} e^{-j 360 \pi t}
$$

10. page 59, Fig. 3.8: The two-sided spectrum should use $\frac{1}{2} X_{k}$, so all the spectral lines are twice as big as they should be.
11. pages 60-61: Figures $3.9,3.10$ and 3.11 are incorrect. The plots are flipped from what they should be.
12. page 63, line 3: ...century. We will not present a detailed...
13. page 64 , equation (3.4.5): This equation only needs to be written for $k \geq 0$, so it should read:

$$
X_{k}= \begin{cases}\frac{4}{j \pi k} & k=1,3,5, \ldots \\ 0 & k=0,2,4,6, \ldots\end{cases}
$$

14. page 64 , Fig. 3.12: The two-sided spectrum should use $\frac{1}{2} X_{k}$, so all the spectral lines are twice as big as they should be.
15. page 74, after Eq. (3.6.4): ...if we divide by $2 \pi$.
16. page 81 , problem 3.11, equation (3.8.4): radians/sec
17. page 83 , last line: ...with straight lines. Indeed, digital computers...
18. page 85 , first line: We can also compute the values...
19. page 86 , last line, first paragraph: if $\omega=\underline{2000 \pi} \mathrm{rad} / \mathrm{sec}$ and $T_{s}=1 / 20000 \mathrm{sec} \ldots$
20. page 88 , last equation, second and third lines:

$$
\begin{aligned}
& =A \cos \left(2 \pi f_{0} n T_{s}+2 \pi \ell \underline{n} f_{s} T_{s}+\phi\right) \\
& =A \cos \left(2 \pi f_{0} n T_{s}+2 \pi \ell \underline{n}+\phi\right)
\end{aligned}
$$

21. page 104 , section 4.4 .4 , lines 1 and 2 : ...is defined as a pulse consisting of first-order...
22. page 119 , line 7 : ...output is the sum of a finite number of weighted samples of the input...
23. page 120 , line 4: ...while for reconstruction the opposite is true.
24. page 124 , section 5.3 , first line: ...special case of the general difference equation
25. page 129 , sixth line of table, first entry: ... $2 \delta[n-4]$
26. page 133, line 5 (hh in the third line of Matlab code): $y y=\operatorname{conv}(h h, x x)$;
27. page 133, section 5.4, first line: ...definition of an FIR filter is
28. page 180 , second line from bottom: ...and is zero whenever $11 \hat{\omega} / 2=\underline{\pi k}$, where $k$ is...
29. page 183, bb in third line of MATLAB code: $H=$ freqz (bb, 1, omega);
30. page 190, section 6.8.1: Section title should be 6.8.1 Example: Lowpass Averager
31. page 198, problem 6.11, part (e): Need period at the end of the sentence. ... $5 \delta[n-3]$.
32. page 200, problem 6.18: Remove period at the end of the displayed equation

$$
h_{2}[n]=\delta[n]-\delta[n-1]+\delta[n-2]-\delta[n-3]
$$

33. page 219, Figure 7.3: Add $X(z), W(z)$ and $Y(z)$ to the figure, underneath $x[n], w[n]$ and $y[n]$.
34. page 225 , line 5: ...Similarly, $60-\mathrm{Hz}$ interference from...
35. page 233 , line 9: ...on a polynomial $G(z)$ :
36. page 239, Section 7.9: In the title: 7.9 PROPERTIES OF LINEAR-PHASE FILTERS
37. page 239, Section 7.9.1: In the title: 7.9.1 The Linear-Phase Condition
38. page 241, Section 7.9.2: In the title: 7.9.2 Locations of the Zeros of FIR Linear-Phase Systems
39. page 240, line 6 from bottom: ...times a linear-phase factor...
40. page 241 , three places: linear phase $\rightarrow$ linear-phase
41. page 242 , line 4 : ...are quite important because filter properties...
42. page 242 , line 13: ... deals with common filters such as the first difference...
43. page 245 , problem 7.8 part (d): From $H(z)$ obtain an expression...
44. page 245 , problem 7.9 , line 2 : ... input to the second system and the overall...
45. page 246, problem 7.14:

$$
H(z)=\left(1+z^{-2}\right)\left(1-4 z^{-2}\right)=1-\underline{3} z^{-2}-4 z^{-4}
$$

46. page 248 , problem 7.17 , part (b):

$$
H(1 / z)=-\underline{z}^{4} H(z)
$$

47. page 248 , problem 7.17, part (c): ..results for any $M$, i.e., both even and odd.
48. page 257 , line 8 (value of $y[n]$ at $n=1$ ): $10(0.8)-15=-7 \quad n=1$
49. page 262, line before Example 8.4: ...numerator and denominator polynomials, respectively.
50. page 268, Example 8.5, second line: ...the impulse response of the system
51. page 269 , Section 8.4 , line 2 : ... polynomials have zeros. These zero locations in the... There are others on this page.
52. page 275, Figure 8.9 (top): $y$-axis label should be Magnitude
53. page 278, Figure 8.12: (top) $y$-axis label should be Magnitude;
54. page 289, Section 8.9.1: section title should be: $z$-Transform of Second-Order Filters
55. page 293, box: ...the root either must be real or must occur...
56. page 295, 2nd line from bottom: ...the poles may both be real or they may be a pair of...
57. page 319, Prob. 8.21(a), delete duplicated phrase:

Use $z$-transforms to show that the system function for the overall...
58. page 377, Prob. 9.10, Add sampling rate information:

Assume that a speech signal has been sampled at 8000 Hz and then analyzed with...
59. page 378 , line $10, \ldots$ complex exponential $z=r e^{j \theta}=\underline{r \cos \theta+j r \sin \theta}$ provides a...
60. page 381 , line 8: ...and may be either positive (counterclockwise) or negative (clockwise).
61. page 389, Fig. A. 8 caption: ...the four vectors $\{1+j,-1+j,-1-j, 1-j\}$ by using...
62. page 390 , item 2 : ...drawn with its tail at the head of $z_{1}$ and its head at the head of $z_{2}$.
63. page 391, lines 2 and 3: ... we must decide whether or not $\left|z_{1}\right|$ and/or $\left|z_{2}\right|$ are greater than 1 . In Fig. A.10, it is assumed that both are larger than 1.
64. page 392, section A.5.5 title: Geometric View of Inverse, $z^{-1}$
65. page 392, Figure A. 13 caption: ...complex number inverse $1 / z$. For the vectors shown, $\left|z_{1}\right|<1$...
66. page 393, section A.5.6 title: Geometric View of Conjugate, $z^{*}$
67. page 398, Problem A.7: ...complex-valued expressions. Give your answers in polar form.
68. page 403, equation for $D$ :

$$
\ldots=\left[\begin{array}{ll}
a_{1,1} b_{1,1} & a_{1,2} b_{1,2} \\
a_{2,1} b_{2,1} & a_{2,2} b_{2,2} \\
a_{3,1} b_{3,1} & a_{3,2} b_{3,2}
\end{array}\right]
$$

69. page 404, last word in section B.3.1: ...of the plot window.
70. page 405 ,section B. 4 , line 1 : ...pardigm of "functional programming" in which...
71. page 406, line 7: ...versus the pointwise exponential (exp) :
72. page 409, item 2., line 6: ...and then definitions of the input...
73. page 412, 5 lines from bottom: ...Note that these last two statements process the entire matrix without ever using a for loop.
74. page 414, font in 2nd to last line: ...limited to help...
75. page 417 , font in item 2 . of section C.1.2.1: Explore the MATLAB help capability. Type...
76. page 420 , item 2. last line of code should be xx , not x
77. page 421, last line of code on the page: $x \mathrm{x}=\cos (2 * \mathrm{pi} * \mathrm{f} \star \mathrm{tt})$;
78. page 422, 5th line of code from bottom: ...makes the input vector xx into a column...
79. page 424, item 1. 9 lines from bottom: You saw how easy it is for MatLab...
80. page 427, first line: The goal of this laboratory is to gain familiarity...
81. page 429 , item 3.: ...and plot the sum. Use zcat to show...
82. page 429 , space in line 3 of item 4.: Use zprint_to display the results...
83. page 433, line 2: ...synthesis program, or some other
84. page 436, line 4: (or $\underline{A_{4}}$ ) because...
85. page 438, add semicolon to 10 th line of code: $\mathrm{n} 1=1$;
86. page 456 , line 1 : The goals of this lab are...
87. page 456 , 3 rd line from bottom: ...is a vector containing samples of a cosine function.
88. page 458 , equation (C.5.8) should have $1 / L$, not $1 / L+1$ :

$$
y[n]=\frac{1}{L} \sum_{k=0}^{L-1} x[n-k]
$$

89. page 460 , line 3 : ... $\mathrm{xx}_{-}$so it can also be used...
90. page 460, item 2., line 3: ... label the $x$-axis to span the range $0 \leq n \leq 49$.
91. page 462 , 2nd line from end: ... and by plotting the time-frequency response of the filter...
92. page 463, after eq. (C.6.1): ..gives a formula for computing the $n$th value...
93. page 464, 6 lines from bottom: ... Explain why this is so by stating a definition...
94. page 466 , item 1. remove indent and make into one paragraph
95. page 473 , last line in section C.7.1.6: ...can be compensated for by doubling...
96. page 481, 8 lines from bottom: ...that their pixel values are always non-negative...
97. page 486, last line: ...purpose we will use "Gaussian-shaped" functions...
98. page 491, line 6: ...they do. For an 8 -bit
99. page 506, line 5: ...Use a power-of-2 FFT for efficiency.
100. page 512, Synthetic Strobe Movies (text line 2): ...effect on a_rotating disk.
101. page 512, Linearity Property (text line 3): ...the blocks, the input, or
102. page 512, Time-Invariance Property (capitalize $P$ )
103. page 512, Time-Invariance Property (text line 4): ...the blocks, the input, or
104. page 513, Introduction to FIR Filters (capitalize F)
105. page 513, Introduction to FIR Filters (text lines 2 and 3): ...lowpass filtering ... highpass filtering will
106. page 513, 7. Three-Domains (text line 3): ...the frequency domain, is illustrated with...
107. page $513, \mathrm{PeZ}$ (text line 4 ): ...plots are displayed. When
108. page $513, \mathrm{PeZ}$ (text line 6): ...plots are updated in
109. page 513, 8. Three-Domains (text line 3): ...the frequency domain, is illustrated with...
110. page 514, Music GUI (text line 3): ...synthesis, and viewing...
111. page 514 , Complex Numbers via MATLAB all caps for MATLAB
112. page 514, Complex Numbers via MATLAB (text line 4): ...exponentials are handled by...
113. page 514, Z Drill (text line 4): ...conjugation, and inversion are covered.
114. page 515, Lab 1: Introduction to MATLAB all caps for MATLAB
115. page 515, Lab 1: Introduction to MATLAB (text line 2): all caps for MATLAB
116. page 515, Lab 2: (text line 1): Manipulating sinusoidal functions using
117. page 515, Lab 3: (text replace last sentence):

Several pieces of sheet music are provided for music synthesis.
118. page 515, Lab 4: (text line 3): These_ signals which implement...
119. page 516, Lab 5: (text line 2): FIR filters in MATLAB, and ...
120. page 516, Lab 5: (text line 7): linearity and time-invariance are reviewed.
121. page 516, Lab 6: (text line 5): ...can be reordered
122. page 516, Lab 10: (text lines 1 and 4): A MATLAB tool called PeZ (short...via PeZ
123. page 517, Lab 9: Sampling and Zooming of Images (new title)
124. page 517, Lab 9: (text line 3): Different interpolation filters are developed and tested...

