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Laboratory 1

Signals Statistics and Detection
I

1.1 Introduction

In everyday language, a signal is anything that conveys information. We might talk about
traffic signals or smoke signals, but the underlying purpose is the same. In the study of
signals and systems engineering, however, we adopt a somewhat more specific notion of a
signal. In this field, a signal is a numerical quantity that varies with respect to one or more
independent variables. One can think of a signal as a functional relationship, where the
independent variable might be time or position.

As an example, one signal might be the voltage on a wire that varies with time. Another
signal might be light intensity that varies with position along a sensor array. The important
aspect of these signals, though, is the mathematical representation, not the underlying
medium. That is, the voltage and light signals might be exactly the same, despite the
fact that the signals come from two very different physical sources. In signals and systems
engineering, we recognize that the most important aspects of signals are mathematical.
Thus, we don’t need to know anything about the physical behavior of voltage or light to
deal with these signals.

Throughout this course we will develop tools for analyzing, modifying, and extracting
information from signals mathematically. One of the most basic (and sometimes most useful)
methods involves the calculation of signal statistics. Calculating signals statistics provides
us a substantial amount of useful information about a signal. These statistics allow us to
determine “how much” signal is present (i.e., the signal strength), how long a signal lasts,
what values the signal takes on, and so on. We will use signal statistics to develop measures
of signal quality (with respect to a reference signal) and also to perform signal detection (by
determining when a signal contains useful information rather than just background noise).

1.1.1 “The Questions”

• How can I quantitatively determine a signal’s “quality”?

• How can I detect segments of speech within a speech signal?
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(A)

(B)

Figure 1.1: (A) A continuous-time signal. (B) A discrete-time signal.

1.2 Background

1.2.1 Continuous-time and discrete-time signals

In its most elementary form, a signal is a time-varying numerical quantity, for example,
the time-varying voltage produced by a microphone. Equivalently, a signal is a numerically
valued function of time. That is, it is an assignment of a numerical value to each instance
of time. As such, it is customary to use ordinary function notation. For example, if we use
s to denote the signal, i.e. the function, then s(t) denotes the value of the signal at time
instance t. In common usage, the notation s(t) also has an additional interpretation — it
may also refer to the entire signal. Usually, the context will make clear which interpretation
is intended.

We will deal with many different signals and to keep them separate we will use a variety
of symbols to denote them, such as such as r, x, y, z, x′. Occasionally, we will use other
symbols to denote time, such as t′, s, or u. In some situations, the independent parameter
t represents something other than “time”, such as “distance”. This happens, for example,
when pictures are considered to be signals.

As illustrated in Figure 1.1, there are two basic kinds of signals. When the time variable
t ranges over all real numbers, the signal s(t) is said to be a continuous-time signal. When
the time variable t ranges only over the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}, the signal
s(t) is said to be a discrete-time signal. To distinguish these, from now on we will use a
somewhat different notation for discrete-time signals. Specifically, we will use one of the
letters i, j, k, l,m, n to denote the time variable, and we will enclose the time-variable in
square brackets, rather than parentheses, as in s[n]. Thus, for example, s[17] denotes the
value of the discrete-time signal s[n] at time n = 17. Note that for discrete-time signals,
the time argument has no “units”. For example, s[17] simply indicates the 17th sample of
the signal. When the independent parameter t or n represents something other than time,
for example distance, then the signal can be said to be continuous-space or discrete-space,
respectively, or more generally, continuous-parameter or discrete-parameter.

It is important to reemphasize the inherent ambiguity in the notation s(t) and s[n].
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Sometimes s(t) refers to the value of the signal at the specific time t. At other times, s(t)
refers to the entire signal. Usually, the intended meaning will be clear from context. The
same two potential interpretations apply to s[n].

1.2.2 Describing Signals

Some continuous-time signals can be described with formulas, such as s(t) = sin(t) or
s(t) = 0, t < 0, s(t) = cos(t), t ≥ 0. For other signals, there are no such formulas. Rather
they might simply be measured and recorded, as with an analog tape recorder. Similarly,
some discrete-time signals can be described with formulas, such as s[n] = sin(n) or s[n] =
0, n < 0, s[n] = cos(n), n ≥ 0, and some are described simply by recording their values, i.e.
by recording s[n],−∞ < n < ∞.

Often, a discrete-time signal is obtained by sampling a continuous-time signal. That is,
if Ts is a small time increment, then the discrete-time signal s[n] obtained by sampling s(t)
with sampling interval or sampling period Ts is defined by

s[n] = s(nTs) ,−∞ < n < ∞ (1.1)

For example, if s(t) = sin(t) and Ts = 3, then the discrete-time signal obtained by sampling
with sampling interval Ts is s[n] = sin(3n). The reciprocal of Ts is called the sampling
rate or sampling frequency and denoted fs = 1/Ts. Its units are samples per second. The
discrete-time signal in Figure 1.1 was obtained by sampling the continuous-time signal shown
above it.

In the above example, we have allowed the time parameter to be negative as well as
positive, which begs the question of how to interpret negative time. Time 0 is generally
taken to be some convenient reference time, and negative times simply refer to times prior
to this reference time.

Nowadays, signals are increasingly processed by digital machines such as computers and
DSP chips. These are inherently discrete-time machines. They can record and work with
a signal in just two ways: as a formula or as a sequence of samples. The former applies to
continuous-time and discrete-time signals. For example, a computer can easily compute the
value of the continuous-time signal s(t) = sin(t) at time t =

√
2 or the value of the discrete-

time signal s[n] = cos(n) at time n = 17. However, the latter works only with discrete-time
signals. Thus, whenever a digital machine works with a continuous-time signal, it must
either use a formula or it must work with its samples. That is, it must work with the
discrete-time signal that results from sampling the continuous-time signal. This admonition
applies to us, because in this and future lab assignments, many of the signals in which we are
interested are continuous-time, yet we will process them exclusively with digital machines,
i.e. ordinary computers.

Except in certain ideal cases, which never apply perfectly in real-world situations, sam-
pling a continuous-time signal entails a “loss”. That is, the samples only partially “cap-
ture” the signal. Alternatively, they constitute an approximate representation of the original
continuous-time signal. However, as the sampling interval decreases (equivalently, the sam-
pling rate increases), the loss inherent in the sampled signal decreases. Thus in practical
situations, when the sampling interval is chosen suitably small, one can reliably work with
a continuous-time signal by working with its samples, i.e. with the discrete-time signal
obtained by sampling at a sufficiently high rate. This will be the approach we will take in
this and future lab assignments, when working with continuous-time signals that cannot be
described with formulas.
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When digital machines are used to process signals, in addition to sampling, one must also
quantize, or round, the sampled signal values to the limited precision with which numbers
are represented in the machine, e.g. to 32-bit floating point. This engenders another “loss”
in the signal representation. Fortunately, for the computers we will use in performing our
lab experiments, this loss is so small as to be negligible. For example, Matlab uses 64-bit
double-precision floating point representation of numbers. (Lab 5 is an exception; in that
lab, we will consider systems that are designed to produce digital representations of signals
with as few bits as possible.)

1.2.3 Signal support and duration

The support of a signal is the smallest time interval that includes all non-zero values of
the signal. For example, the continuous-time signal s(t) = cos(t), 0 ≤ t ≤ 3, s(t) = 0, else
has support interval [0, 3]. The discrete-time signal s[n] = cos(n), 0 ≤ n ≤ 3, has support
interval [0, 3] = {0, 1, 2, 3}. The duration of a signal is simply the length of its support
interval. In the previous examples, the duration of s(t) is 3, and the duration of s[n] is 4.
Note that the support and duration of a signal can be either finite or infinite.

1.2.4 Periodicity

Periodicity is a property of many naturally occurring or man-made signals. A continuous-
time signal s(t) is said to be periodic with period T , where T is some positive real number,
if

s(t + T ) = s(t) , for all t (1.2)

If s(t) is periodic with period T , then it is also periodic with period 2T , 3T , . . . . The
fundamental period To of s(t) is the smallest T such that s(t) is periodic with period T .

Similarly, a discrete-time signal s[n] is said to be periodic with period N , where N is
some positive integer, if

s[n + N ] = s[n] , for all n (1.3)

If s[n] is periodic with period N , then it is also periodic with period 2N , 3N , . . . . The
fundamental period No is the smallest N such that s[n] is periodic with period N .

1.2.5 Signals in Matlab

While signals can be represented by formulas or by recorded signal values, when working
in Matlab, we generally use the latter. That is, we represent a signal as a vector (i.e., a
one-dimensional array) of numbers.

Discrete-time signals

We begin with an example. Suppose we want to represent the following discrete-time signal
as an array in Matlab:

s[n] =
{

n2 5 ≤ n ≤ 15
0 else (1.4)

In Matlab, we do this by creating two vector: a support vector and a value or signal vector.
The support vector represents the support interval of the signal, i.e. the set of integers from
the first time at which the signal is nonzero to the last. For this example, the support vector
can be created with the command
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>> n = 5:15

This causes n to be the array of 11 numbers 5,6,. . . ,15 . Next, the signal vector can be
created with the command

>> s = n.^2

which causes s to be the array of 11 numbers 25,36,. . . ,225 .
Note that as in the above example, we usually only specify the signal within the range of

times that it is nonzero. That is, we usually do not include zero values outside the support
interval in the signal vector.

It is often quite instructive to plot signals. To plot the discrete-time signal s[n], use the
stem command:

>> stem(n,s)

You can also use the plot command; however, plot draws straight lines between plotted
points, which may not be desirable.

It is important to note that in Matlab, s(i) is not necessarily the signal value at time
i. Rather it is the signal at time n(i). Thus, stem(n,s) and stem(s) result in similar
plots with different labelings of the time axis. Occasionally, it will happen that n(i) = i,
in which case s(i) = i and stem(n,s) and stem(s) result in identical plots with identical
time axis labels.

Continuous-time signals

We begin with an example. Suppose we wish to represent the following continuous-time
signal as an array in Matlab:

s(t) =
{

t2 5 ≤ t ≤ 15
0 else (1.5)

We first choose a sampling interval Ts with a command such as

>> Ts = 1/20

We then create a support vector with the command

>> t = 5:Ts:15

Finally, we create a signal vector with the command

>> s = t.^2

What have we done? To represent s(t), we have created a support vector t that contains
the sample times 5, 5 + 1/20, 5 + 2/20, 5 + 3/20, . . . , 15 , and we have created a signal vector
s that contains the samples s(5), s(5 + 1/20), s(5 + 2/20), s(5 + 3/20), . . . , s(15). That is,
for n = 1, . . . , 301, s(n) contains the signal value at time t(n) = 5 + (n-1)/20.

Note that when representing a continuous-time signal as an array, it is usually important
to choose the sampling interval Ts small enough that the signal changes little over any time
interval of Ts seconds.

As with discrete-time signals, it is frequently instructive to plot a continuous-time signal.
This is done with the command
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>> plot(t,s)

which plots the points (t(1),s(1)), (t(2),s(2)), . . ., and connects them with straight
lines. Connecting these points in this manner produces a plot that approximates the original
continuous-time signal s(t), which takes values at all times (not just integers) and which
usually does not change significantly between samples (assuming Ts is chosen to be small
enough). Note that plot(s) produces a similar plot, but the horizontal axis is labeled with
sample “indices” (i.e., the number of the corresponding sample) rather than sample times.
When working with continuous-time signals, it is important that you always use plot(t,s)
rather than plot(s). It also important that your plot indicates what the axes represent,
which can be done using the xlabel and ylabel commands.

1.2.6 Signal Statistics

When dealing with a signal, it is often useful to obtain a rough sense of the range of values
it takes and of the average size of its values. We do this by computing one or more signal
statistics.

The following lists a number of common signal statistics. It gives the defining formula
for each for both continuous-time and discrete-time signals. Also included is Matlab code
for calculating the statistic1 for a discrete-time signal. If we wish to compute a statistic
for a continuous-time signal when we only have a sampled representation, we can use the
discrete-time statistic to approximate the continuous statistic. The formulas needed for this
approximation are included here with the label “sampled.” (In most cases, this approxima-
tion becomes better as the sampling interval Ts decreases.) For completeness, signal support
and duration are also defined below.

1. Support Interval. A signal’s support interval (also occasionally known as just the
signal’s support or its interval) is the smallest interval that includes all non-zero values
of the signal.

Continuous-time: t1 ≤ t ≤ t2 (1.6)
Discrete-time: n1 ≤ n ≤ n2 (1.7)

Matlab: n = n1:n2 for a signal s. (1.8)

2. Duration. The duration of a signal is simply the length of the support interval.

Continuous-time: t2 − t1 (1.9)
Discrete-time: n2 − n1 + 1 (1.10)

Matlab: Assumed length(s) for a signal s. (1.11)
Sampled: (t2 − t1) = (n2 − n1 + 1)Ts (1.12)

3. Periodicity. Periodicity was described in section 1.2.4. The key formulas are included

1This code assumes that the signal vector s is defined only over the range of times for which we wish
to compute the statistic. More generally, if n is the support vector and n1 and n2 define a subset of the
support vector over which we wish to calculate our statistic, we can compute the statistic over only this
range, n1:n2, by replacing the signal s with the shorter signal s((n1:n2)-n(1)+1).
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here.

Continuous-time: s(t) = s(t + T ) (1.13)
Discrete-time: s[n] = s[n + N ] (1.14)

Sampled: T ≈ NTs (1.15)

4. Maximum and Minimum Value. These values are the largest and smallest values
that a signal takes on over some interval defined by n1 and n2. In Matlab these
values are found using the min and max commands.

Matlab: Maximum(s) = max(s) (1.16)
Matlab: Minimum(s) = min(s) (1.17)

5. Average Value. The average value, M , is the value around which the signal is
“centered” over some interval.

Continuous-time: M(s(t)) =
1

t2 − t1

∫ t2

t1

s(t)dt (1.18)

Discrete-time: M(s[n]) =
1

n2 − n1 + 1

n2∑
n1

s[n] (1.19)

Matlab: M(s) = mean(s) (1.20)
Sampled: M(s(t)) ≈ M(s[n]) (1.21)

6. Mean-squared value. The mean-squared value (or MSV ) of a signal, MS, is defined
as the average squared valued of the signal over an interval. The MSV is also called
the average power, because the squared value of a signal is considered to be the
instantaneous power of the signal.

Continuous-time: MS(s(t)) =
1

t2 − t1

∫ t2

t1

s2(t)dt (1.22)

Discrete-time: MS(s[n]) =
1

n2 − n1 + 1

n2∑
n1

s2[n] (1.23)

Matlab: MS(s) = mean(s.^2) (1.24)
Sampled: MS(s(t)) ≈ MS(s[n]) (1.25)

7. Root mean squared value. The root mean squared value (or RMS value) of a signal
over some interval is simply the square root of mean squared value.

Continuous-time: RMS(s(t)) =

√
1

t2 − t1

∫ t2

t1

s2(t)dt (1.26)

Discrete-time: RMS(s[n]) =

√√√√ 1
n2 − n1 + 1

n2∑
n1

s2[n] (1.27)

Matlab: RMS(s) = sqrt(mean(s.^2)) (1.28)
Sampled: RMS(s(t)) ≈ RMS(s[n]) (1.29)
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Figure 1.2: Signal value distribution and a discrete histogram approximation

8. Signal Energy. The energy of a signal, E, indicates the strength of a signal is present
over some interval. Note that energy equals the average power times the length of the
interval.

Continuous-time: E(s(t)) =
∫ t2

t1

s2(t)dt (1.30)

Discrete-time: E(s[n]) =
n2∑
n1

s2[n] (1.31)

Matlab: E(s) = sum(s.^2) (1.32)
Sampled: E(s(t)) ≈ E(s[n])Ts (1.33)

9. Signal Value Distribution. The signal value distribution is a plot indicating the
relative frequency of occurrence of values in a signal. There is no closed-form formula
defining the signal value distribution, but it can be approximated using a histogram.
A histogram counts the number of samples that fall within particular ranges, or bins.
Note that the y-axis is effectively arbitrary, and that the coarseness of the approxima-
tion is determined by the number of histogram bins that are used. Figure 1.2 shows
an example of a signal value distribution and the histogram approximation to that
distribution.

Matlab: hist(s,num_bins); (1.34)

1.2.7 Measuring signal distortion and error

Suppose that we wish to transmit a signal from one location to another. This is a common
task in communication systems. A common problem with this task is that the signal is often
modified or distorted. Thus, the received signal is not the same as the transmitted signal.
Typically, we want to reduce the amount of distortion as much as possible. However, this
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requires that we have a method of measuring the amount of distortion in a signal. In order
to develop such a measure, we’ll look at a signal plus noise model of signal distortion.

Suppose we are transmitting a signal s[n] over FM radio. Someone tunes in to our
radio station and receives a modified version of our signal, s′[n]. We can represent this
modification mathematically as the addition of an error signal, v[n], like this:

s′[n] = s[n] + v[n]. (1.35)

Assuming that we have both s[n] and s′[n], we can easily calculate v[n] as

v[n] = s′[n] − s[n]. (1.36)

Note that if s[n] and s′[n] are identical, v[n] will be zero for all n. This suggests that we can
simply measure the signal strength of v[n] by using one of the energy or power statistics.

Mean squared value is a natural choice because it normalizes the error with respect to
the length of the signal. Sometimes, though, the RMS value is more desirable because it
produces error values that are directly comparable to the values in v[n]2. When we measure
the MSV of an error signal, we sometimes call it the mean squared error or MSE. Similarly,
the RMS value of an error signal is often called the root mean squared error or RMSE.

In Matlab, we will usually want to calculate the MSE or RMSE over the entire length
of the signals that we have. Supposing that we are given a signal s and a modified version
s_mod (with the same size), we can calculate the MSE and RMSE like this:

>> mse = mean((s - s_mod).^2);
>> rmse = sqrt(mean((s - s_mod).^2));

Notice that we could also subtract s_mod from s; the order doesn’t matter because of the
square operation. Also note that you must include the period before the exponentiation
operator in order to correctly square each sample.

1.2.8 Signal detection

Suppose that we are designing a continuous speech recognition and transcription system for
a personal computer. The computer has a microphone attached to it, and it “listens” to
the user’s speech and tries to produce the text that was spoken. However, the user is not
speaking continuously; there are periods of silence between utterances. We don’t want to
try to recognize speech where there is silence, so we need some means of determining when
there is a speech signal present.

This is an example of signal detection. There are many different types of signal detection.
Sometimes signal detection involves finding a signal that is obscured by noise, such as radar
detection. In other applications, we need to determine if a particular signal exists in a signal
that is the sum of many signals. The “signal present” detector for our speech recognition
system is a simpler form of signal detection, but it still important in many applications.
One particular communication system, known as on/off keying, generally makes use of such
a “signal present” detector.

In this laboratory, we will consider the design of such a “signal present” detector to
identify spoken segments of a speech signal. Note, however, that the detector we will design
can be used for many other applications as well. Figure 1.3 shows a block diagram of such

2Mean square values are comparable to the square of the values in v[n]
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Figure 1.3: An “overview” block diagram for a “signal present” detector.

a detector. The detector consists of two blocks. The first block computes one or more
statistics that we will use to perform the detection. The second block uses the computed
statistic(s) to make the final decision.

Specifying the detector’s operation

The first step is to specify what our system needs to do. From the description above, we
know that we will receive a signal as an input. For simplicity, we’ll assume that we are given
an entire discrete-time signal. What must our system do? We need some sort of indication
as to when speech is present in a signal. However, the signal that we are given will contain
both periods of silence and periods with speech. For some integer N , let us break the signal
into blocks of N samples, such that the first N samples make up the first block, the second
N samples make up the second block, and so on. Then, we will make a “speech present”
or “speech not present” decision for each block separately. The output of our system will
consist of a signal with a 0 or 1 for each block, where a 1 denotes “speech present” and a 0
denotes “speech not present”. To describe this signal in Matlab, our system will produce
a signal support vector containing containing the index of the first sample of each block and
a signal vector containing the 0 or 1 for each block. Choosing the support vector in this
way will allow us to plot the decisions on the same figure as the signal itself.

How will we make the decision for each block? Since we can assume a signal that is
relatively free of noise and has zero mean, we could simply calculate the energy for each
block and compare the result to a threshold. If the statistic exceeds the threshold, we decide
that speech is present. Otherwise, we decide that speech is not present. Using signal energy,
though, is not ideal; the necessary threshold will depend on the block size. We may want to
change the block size, and we should be able to keep the threshold constant. Using average
power is a better option, but we would like our threshold to have a value comparable to the
values of the signal. Thus, the RMS value seems to be an ideal choice, and this is what we
will use.

Note that our detector system will have two parameters. One is the block size, and the
other is the threshold. We will need to find reasonable values for these parameters when
we make the detector itself. A more detailed block diagram of the detector can be found in
Figure 1.4.

Detector algorithm

Now that we’ve specified the behavior of the detector, let’s come up with an algorithm for
performing the detection. Of course, this is not the only way to implement this detector.

It is assumed that the input signal is contained in a signal vector x whose support vector
is simply 1,2,...,length(x).
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Figure 1.4: A detailed block diagram for the “signal present” detector.

• Define a block_size.

• Define a threshold.

• Calculate the number_of_blocks.

• Determine the support vector support_output for the output signal.

• For each block of the signal:

– Calculate the RMS value of the current block

– Compare the RMS value to the threshold

– Store the result in the output array

• Return the output array

What follows are some details about the algorithm:

1. First, note that we want number_of_blocks to be an integer. For this calculation,
recall that the function length returns the number of samples in a vector. Also, note
that the floor command rounds down to the nearest integer

2. Suppose that the block size is 512. The vector support_output should contain the
numbers [1, 513, 1025, ...] and so on. You can generate support_output with
a single line of code by using the : operator3.

3. There are actually two separate ways to implement the “for each block” part of this
algorithm in Matlab. One involves using a for loop, while the other makes use
of the reshape command and Matlab’s vector and matrix arithmetic capabilities.
Both take roughly the same amount of code, but the second way is somewhat faster.
You can implement whichever version of the algorithm that you choose in the lab
assignment.

3Type help colon if you need assistance with this operator.
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(a) If you implement the algorithm using a for loop, you should first initialize the
output array to “empty” using the command “output =[];”. Then, loop over
the values in support_output. Within the loop, you need to determine what
values of n1 and n2 to use in the RMS value calculation for a given value of the
loop counter. Then, compare the RMS value that you calculate to the threshold
and append the result to the end of output4.

(b) An alternative to the for loop is to use the reshape command to make a matrix
out of our signal with one block of the signal per column. If you choose to use
reshape, you first need to discard all samples beyond the first block_size ×
number_of_blocks samples of the input signal. reshape this shorter signal into
a matrix with block_size rows and number_of_blocks columns5. Then, use .^
to square each element in the matrix, use mean to take the mean value of each
column, and take the sqrt of the resulting vector to produce a vector of RMS
values. Finally, compare this vector to threshold to yield your output vector.

1.3 Some Matlab commands for this lab

• Zooming on Figures: In Matlab, you can interactively zoom in and out on figure
windows. To do so, you can either find a “+ magnifying glass” icon on the figure
window, or you can type zoom on at the command lines. Then, you can click and
drag a zoom box on the figure window to get a closer look at that portion of the
figure. Also very useful is the zoom xon command, which only enables zooming in the
x-direction; this is usually how we will want to zoom in on our signals.

• Using line styles and legend: Whenever you plot two or more signals on the same
set of axes, you must make sure that the signals are distinguishable and labeled.
Generally, we do this using line styles and the legend command. The plot command
gives you a wide range of options for changing line styles and colors. For instance, the
commands

>> hold on
>> plot(1:10,1:10,'-')
>> plot(1:10,2:11,':')
>> plot(1:10,3:12,'--')

plot lines using solid, dotted, and dashed lines. Type help plot for more details about
using different line styles and colors. The legend command adds a figure legend for
labeling the different signals. For instance, the command

>> legend('Solid (lower)', 'Dotted (middle)', 'Dashed (higher)')

adds a legend with labels for each of the three signals on the figure. Note that signal
labels are given in the order that the signals were added to the figure.

• Labeling Figures: Any time that you create a figure for this laboratory, you need
to include axis labels, a figure number, and a caption:

4Use either output(end+1) = result; or output = [output, result];
5Remember to assign the output of reshape to something! No Matlab function ever modifies its input

parameters unless you explicitly reassign the output to the input.
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>> xlabel('This is the x-axis label');
>> ylabel('This is the y-axis label');
>> title('Figure 1: This is a caption describing the figure');

Note that it is recommended that you use your word processor to produce figure
numbers and captions, rather than using the title command. You also need to
include the code that you used to produce the figures, including label commands.
Note that each subplot of a figure must include its own axis labels.

• Function Headers: At the top of the file containing a function declaration, you must
have a line like this:

function [out1, out2, out3] = function_name(in1, in2, in3)

where in1, in2, and in3 are input parameters and out1, out2, and out3. Note that
you can name the parameters anything you like, and there can be any number of
them. The word function is a Matlab keyword. Also, you do not need to explicitly
return the output parameters. Instead, Matlab will take their values at the end of
the function’s execution and return them to the calling function.

• sum, mean, min, and max: Given a vector (i.e., a one-dimensional array), these Mat-
lab functions calculate the sum, mean, minimum, and maximum (respectively) of
the numbers in the array and returns a single number. If these functions are given a
matrix (i.e., a two-dimensional array), they calculate the appropriate statistic on each
column of the matrix and return a row-vector containing one result for each column.

• for loops: Most for loops in Matlab have the following form

>> for index = 1:20
>> % This loop is executed twenty times
>> end

In this case, the loop counter, index, is set to 1 on the first execution loop, 2 on the
second, and so on. The loop will execute a total of 20 times. We can, of course, use
any variable for the loop counter.

A more general form of the for loop is given by

>> for index = row_vector
>> % Code in the loop goes here
>> end

where index is the loop counter and row_vector is a row vector that contains all the
values that will be assigned to index on successive iterations of the loop. Thus, the
loop will execute size(row_vector,2) times6.

• Reshaping arrays: The reshape command is used to change the shape of an array:

>> new_array = reshape(array,[new_rows, new_columns]);

6If row vector is actually a matrix (or a column vector), each column of row vector will be assigned to
index in turn.
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array must have new_rows*new_columns elements7. new_array will have dimensions
of new_rows × new_columns.

• Logical operators: The logical operators (>, <, >=, <=, ==, ~=) perform a test for
equality or various forms of inequality. They all operate in the same manner by
evaluating to 1 (“true”) or 0 (“false”) depending upon the truth value of the operator.
After executing the following statement, for instance,

>> result = (x > 0);

result will contain a one or a zero if x is a single number. If x is an array, result
will be an array of ones and zeros with a size equal to x, where each element indicates
whether the corresponding element in x is in fact greater than 0.

1.4 Demonstrations in the Lab Session

• Laboratory policies

• Signals in Matlab – sampling

• Signal statistics

• Approximating continuous-time signal statistics with sampled signals

• Model of discrete-time signal as signal plus noise

• The “signal present” detector

1.5 Laboratory Assignment

Note that in this and all following laboratory assignments, the bullets (i.e, •) indicate items
that you must include in your laboratory.

1. (A simple signal and its statistics) Use the following Matlab commands to create a
signal:

>> n = 1:50;
>> s = sin(2*pi*n/50);

(a) (Plotting a signal with labels) Use stem to plot the signal. Make sure that you
include8:

• The figure itself9.
7The number of elements in array can be checked using the command prod(size(array)).
8Note that every figure that you produce in a laboratory for this class must include these things!
9On Windows systems, you can select “Copy Figure” from Edit menu on the figure window to copy the

figure to the clipboard and then paste it into your report. Also, to make your report compact, you should
make all figures as small as possible, while being just large enough that the important features are clearly
discernable.There are two ways to shrink plots, you can shrink them in your lab report document, or you
can shrink the Matlab window before copying and pasting. Shrinking the Matlab window is generally
preferable because it does not shrink the axis labels. Note, you may need to specify the appropriate copy
option, so that what is in fact copied is the shrunk rather than original version of the plot
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• An x-axis label and a y-axis label.
• A figure number and a caption that describes the figure.
• The code you used to produce the signal and the figure. This should be

included in an appendix at the end of your report10. Make sure you clearly
indicate which problem the code belongs to.

(b) (Calculating signal statistics) Calculate the following statistics over the length of
the signal (i.e., let n1 = 1 and n2 = length(s)), and include your results in your
report11.

• Maximum value
• Minimum value
• Mean value
• Mean squared value
• RMS value
• Energy

(c) (Approximating continuous-time statistics in discrete-time) Suppose that s is
the result of sampling a continuous-time signal with a sampling interval Ts =
1/100 . Use the discrete-time statistics to estimate the following statistics for the
continuous-time signal:

• Signal duration
• Energy
• Average power
• RMS Value

2. (Statistics of real-world signals) Download the file lab1_data.mat from the course
web page. Place it in the present working directory or in a directory on the path, and
type

>> load lab1_data

This file contains two signals which will be loaded into your workspace. You will use
the signal clarinet12 in this problem and in Problem 3. The other signal, mboc, will
be used in Problem 4.

(a) (Plot the real-world signal) Define the support vector for clarinet as 1:length(clarinet).
Then, use plot to plot the signal clarinet.

• Include the figure (with axis labels, figure number, caption, and Matlab
code) in your report.

(b) (Zoom in on the signal) Zoom in on the signal so that you can see four or five
“periods13 .”

10You should include all Matlab code that you use in the appendix. However, you do not need to include
code that is built into Matlab or code that we provide to you.

11Remember to include the code you used to calculate these in your Matlab appendix.
12This is a one-second recording of a clarinet, recorded at a sampling frequency of 22,050 Hz. To listen

to the sound, use the command soundsc(clarinet,22050).
13This signal, like all real-world signals, is not exactly periodic; however, it is approximately periodic.
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• Include the zoomed-in figure (with axis labels, figure number, caption, and
Matlab code) in your report.

(c) (Find the signal’s period) Estimate the “fundamental period” of clarinet. In-
clude:

• Your estimate for the discrete-time signal (in samples).
• Your estimate for the original continuous-time signal (in seconds).

(d) (Approximate the SVD) Use the hist command to estimate the signal value
distribution of clarinet. Use 50 bins.

• Include the figure (with axis labels, code, etc.) in your report.
• From the histogram, make an educated guess of the MSV and RMSV. Explain

how you arrived at these guesses.

(e) (Calculate statistics) Calculate the following (discrete-time) statistics over the
length of the signal:

• Mean value
• Energy
• Mean squared value
• RMS value

3. (Looking at and measuring signal distortion) In this problem, we’ll measure the
amount of distortion introduced to a signal by two “systems.” Download the two
files lab1_sys1.m and lab1_sys2.m. Apply each system to the variable clarinet
using the following commands:

>> sys1_out = lab1_sys1(clarinet);
>> sys2_out = lab1_sys2(clarinet);

(a) (Examine the effects of the systems) Use plot14 and Matlab’s zoom capabilities
to display roughly one “period” of:

• The input and output of lab1_sys1 on the same figure.
• The input and output of lab1_sys2 on the same figure.

(b) (Describe the effects of the systems) What happens to the signal when it is passed
through these two systems? Look at your plots from the previous section and
describe the effect of:

• lab1_sys1.m on clarinet.
• lab1_sys2.m on clarinet.

(c) (Measure the distortion) Calculate the RMS error introduced by each system.

• RMS error introduced by lab1_sys1.
• RMS error introduced by lab1_sys2.
• Which system introduces the least error? Is this what you would have ex-

pected from your plots?

14Make sure the two signals are easily distinguishable by using different line styles. Also, any time that
you plot multiple signals on a single set of axes, you must use legend or some other means to label the
signals!
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4. (Developing an energy detector) In this problem, we will develop a detector that
identifies segments of a speech signal in which speech is actually present. Download
the files sig_nosig.m and lab1_data.mat (if you haven’t already) from the course
web page. The first is a “skeleton” m-file for the signal/no signal detector function.
The second contains a speech signal, mboc15, that we will use to test the detector.

(a) (Write the detector function) Following the detector description given in Section
1.2.8, complete the function in sig_nosig.m. Use a threshold of 0.2 and a block
size of 512. Verify the operation of your completed function on the mboc signal
by comparing its output to that of sig_nosig_demo.dll16.

• Include the code for your completed version of sig_nosig.m in the appendix
of your lab report.

(b) (Plot the results of your function) Call sig_nosig17 like this:

>> [detection,n] = sig_nosig(mboc);

Then, plot the signal mboc (with plot) and the output of sig_nosig (using
stairs(n,detection,'k:');) on the same figure.

• Include this plot in your report.

(c) (Adjusting the threshold) The threshold given above isn’t very good; it causes
the detector to miss significant portions of the signal. Change the threshold until
all significantly visible portions of the signal are properly marked as “speech” by
the detector, but the regions between these portions are marked as “no speech.”
(Note that you cannot use the compiled demo function for this part of the as-
signment.)

• What threshold did you find?
• Include the figure (like the one you generated in Problem 4b) that displays

the output of your detector with this new threshold.

15This signal has also been recorded with a sampling frequency of 22,050 Hz.
16sig nosig demo.dll is a completed version of the function in sig nosig.m. This demo function has been

compiled for use on Matlab version 6 on Windows-based systems ONLY.
17If you did not successfully complete this function, you may use the compiled demo function for this part

of the assignment.
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