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Laboratory 3

Sinusoids and Sinusoidal
Correlation

3.1 Introduction

Sinusoids are important signals. Part of their importance comes from their prevalence in
the everyday world, where many signals can be easily described as a sinusoid or a sum
of sinusoids. Another part of their importance comes from their properties when passed
through linear time-invariant systems. Any linear time-invariant system whose input is a
sinusoid will have an output that is a sinusoid of the same frequency, but possibly with
different amplitude and phase. Since a great many natural systems are linear and time-
invariant, this means that sinusoids form a powerful tool for analyzing systems.

Being able to identify the parameters of a sinusoid is a very important skill. From a
plot of the sinusoid, any student of signals and systems should be able to easily identify the
amplitude, phase, and frequency of that sinusoid.

However, there are many practical situations where it is necessary to build a system that
identifies the amplitude, phase, and/or frequency of a sinusoid — not from a plot, but from
the actual signal itself. For example, many communication systems convey information by
modulating, i.e. perturbing, a sinusoidal signal called a carrier. To demodulate the signal
received at the antenna, i.e. to recover the information conveyed in the transmitted signal,
the receiver often needs to know the amplitude, phase, and frequency of the carrier. While
the frequency of the sinusoidal carrier is often specified in advance, the phase is usually not
specified (it is just whatever phase happens to occur when the transmitter is turned on),
and the amplitude is not known because it depends on the attenuation that takes place
during transmission, which is usually not known in advance. Moreover, though the carrier
frequency is specified in advance, no transmitter can produce this frequency exactly. Thus,
in practice the receiver must be able to “lock onto” the actual frequency that it receives.

Doppler radar provides another example. With such a system, a transmitter transmits a
sinusoidal waveform at some frequency fo. When this sinusoid reflects off a moving object,
the frequency of the returned sinusoid is shifted in proportion to the velocity of the object. A
system that determines the frequency of the reflected sinusoid will also be able to determine
the speed of the moving object.

How can a system be designed that automatically determines the amplitude, frequency
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and phase of a sinusoid? One could imagine any number of heuristic methods for doing
so, each based on how you would visually extract these parameters. It turns out, though,
that there are more convenient methods for doing so – methods which involve correlation.
In this lab, we will examine how to automatically extract parameters from a sinusoid using
correlation. Along the way, we will discover how complex numbers can help us with this task.
In particular, we will make use of the complex exponential signal and see the mathematical
benefits of using an “imaginary” signal that does not really exist.

3.1.1 “The Question”

• How can we design a system that automatically determines the amplitude and phase
of a sinusoid with a known frequency?

• How can we design a system that automatically determines the frequency of a sinusoid?

3.2 Background

3.2.1 Complex numbers

Before we begin, let us quickly review the basics of complex numbers. Recall the a complex
number z = x + jy is defined by its real part, x, and its imaginary part, y, where j =

√−1.
Also recall that we can rewrite any complex number into polar form1 or exponential form,
z = rejθ, where r = |z| is the magnitude of the complex number and θ = angle(z) is the
angle. We can convert between the two forms using the formulas

x = r cos(θ) (3.1)
y = r sin(θ) (3.2)

and

r =
√

x2 + y2 (3.3)

θ =
{

tan−1
(

y
x

)
, x ≥ 0

tan−1
(

y
x

)
+ π, x < 0 (3.4)

A common operation on complex numbers is the complex conjugate. The complex con-
jugate of a complex number, z∗, is given by

z∗ = x − jy (3.5)
= re−jθ (3.6)

Conjugation is particularly useful because zz∗ = |z|2.
Euler’s2 formula is a very important (and useful) relationship for complex numbers. This

formula allows us to relate the polar and rectangular forms of a complex number. Euler’s
formula is

ejθ = cos(θ) + j sin(θ) (3.7)

1Sometimes the polar form is written as z = r∠θ, which is a mathematically less useful form. This form,
however, is useful for suggesting the interpretation of r as a radius and θ as an angle.

2Pronounced “oiler’s”.
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Equally important are Euler’s inverse formulas:

cos(θ) =
ejθ + e−jθ

2
(3.8)

sin(θ) =
ejθ − e−jθ

2j
(3.9)

It is strongly recommended that you commit these three equations to memory; you will be
using them regularly throughout this course.

3.2.2 Sinusoidal and complex exponential signals in continuous time

Recall that a continuous-time sinusoid in standard form, s(t), is given by the formula

s(t) = A cos(ω0t + φ), (3.10)

where A > 0 is the sinusoid’s amplitude, ω0 is the sinusoid’s frequency given in radian
frequency (radians per second), and φ is the sinusoid’s phase. It is also common to represent
such a sinusoid in the following form

s(t) = A cos(2πf0t + φ), (3.11)

where f0 is the sinusoid’s frequency given in Hertz (Hz, or cycles per second). Note that
ω0 = 2πf0. The frequency of a sinusoid is generally restricted to be positive.

The notation for sinusoids also extends to a special signal known as the complex expo-
nential signal3. Complex exponential signals are very similar to sinusoids, and have the
same three parameters. We define a continuous-time complex exponential signal, c(t), in
standard form as

c(t) = Aej(ω0t+φ) (3.12)

It is generally useful to consider that sinusoids are composed of a sum of complex exponential
signals by using Euler’s inverse formulas. Thus, a sinusoid in standard form can be rewritten
in several different ways:

s(t) = A cos(ω0t + φ) (3.13)

=
A

2

[
ej(ω0t+φ) + e−j(ω0t+φ)

]
(3.14)

=
A

2
(c(t) + c∗(t)) (3.15)

= Re
{

Aej(ω0t+φ)
}

(3.16)

Using Euler’s formula, we can also interpret a complex exponential signal c(t) as the sum
of a real cosine wave and an imaginary sine wave:

c(t) = A cos(ω0t + φ) + jA sin(ω0t + φ) (3.17)

Sometimes it is useful to visualize a complex exponential signal as a “corkscrew” in three
dimensions, as in Figure 3.1. Note that it is common to permit complex exponential signals
to have either positive or negative frequency. The sign of the frequency determines the
“handedness” of the corkscrew.

3These are sometimes referred to simply as complex exponentials.
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Figure 3.1: Three-dimensional plot of a complex exponential signal.

3.2.3 Finding the amplitude and phase of a sinusoid with known
frequency

We’ve suggested that we can use correlation to help us determine the amplitude and phase
of a sinusoid with known frequency. Suppose that we have a continuous-time sinusoid (the
target sinusoid)

s(t) = A cos(ω0t + φ) (3.18)

with known frequency ω0, but unknown amplitude A and phase φ, which we would like to
find. We can perform in-place correlation4 between this sinusoid and a reference sinusoid,
u(t), with the same frequency and known amplitude and phase. Without loss of generality,
let u(t) have A = 1 and φ = 0. Then5,

C(s, u) =
∫ t2

t1

A cos(ω0t + φ) cos(ω0t)dt (3.19)

=
A

2

∫ t2

t1

cos(φ) + cos(2ω0t + φ)dt (3.20)

=
A

2

[
cos(φ)t +

1
4ω0

sin(ω0t + φ)
]t2

t1

(3.21)

Since we know the frequency, ω0, we can easily set the limits of integration to include
an integer number of fundamental periods of our sinusoids. In this case, the second term
evaluates to zero and the correlation reduces to

C(s, u) =
A

2
cos(φ)(t2 − t1) (3.22)

4In-place correlation between two real, continuous-time signals, x(t) and y(t) is defined as C(x, y) =∫ b
a x(t)y(t)dt. The length (b − a) is the correlation length.

5Recall that cos(A) cos(B) = 1
2
cos(A − B) + 1

2
cos(A + B).
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This formula is a useful first step. If we happen to know the phase φ, then we can readily
calculate the amplitude A of s(t) from C(s, u0. Similarly, if we know the amplitude A,
we can narrow the phase φ down to one of two values. If both amplitude and phase are
unknown, though, we cannot uniquely determine them.

Note that if the interval over which we correlate is not a multiple of the fundamental
period of u(t), then the second term in equation (3.21) will not be zero. However, if as
commonly happens ω0 is much greater than one, then the second term will be so small that
it can be ignored, and equation (3.22) holds with approximate equality.

To resolve the ambiguity when both amplitude and phase are unknown, one common
approach to correlate with a second reference sinusoid that is π

2 out of phase with the first.
Here, though, we will explore a different method which is somewhat more enlightening.
Notice what happens if we use a complex exponential,

c(t) = ejω0t (3.23)

as our reference signal6:

C(s, c) =
∫ t2

t1

s(t)c∗(t) dt (3.24)

=
∫ t2

t1

A cos(ω0t + φ)e−jω0t dt (3.25)

=
∫ t2

t1

A

2

[
ej(ω0t+φ) + e−j(ω0t+φ)

]
e−jω0t dt (3.26)

=
A

2

∫ t2

t1

ejφ + e−j(2ω0t+φ) dt (3.27)

=
A

2

[
ejφt +

−1
2jω0

e−j(2ω0t+φ)

]t2

t1

(3.28)

If we again assume that we are correlating over an integer number of periods of our target
sinusoid, then the second term goes to zero and we are left with

C(s, c) =
A

2
ejφ(t2 − t1). (3.29)

Our correlation has resulted in a simple complex number whose magnitude is directly pro-
portional to the amplitude of the original sinusoid and whose angle is identically equal to
its phase! We can easily turn the above formula inside-out to obtain

A =
2

t2 − t1
|C(s, c)| (3.30)

φ = angle(C(s, c)) (3.31)

We can also see from equation (3.29) that in correlating with a complex exponential signal,
we have effectively calculated the phasor7 representation of our sinusoid.

6Notice that we conjugate our complex exponential here. This is because correlation between two complex
signals is defined as

∫
x(t)y∗(t)dt.

7When we represent a sinusoid with amplitude A and phase φ as the complex number Aejφ to simplify
the calculation of a sum of two or more sinusoids, this complex number is known as a phasor.
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As with the case of correlating with a sinusoid, we note that when the interval over
which we correlate is not a multiple of the fundamental period of c(t), then the second term
in equation (3.28) is not zero. However, if as commonly happens ω0 is much greater than
1, then the second term will again be small enough that it can be ignored, and equations
(3.29), (3.30), and (3.31) hold with approximate equality.

The Amplitude and Phase Calculator

In this lab we will implement a system that estimates the amplitude and phase of a sinusoid
with a known frequency. Since we will do this using a computer and Matlab, we must
necessarily work with sampled version of the signals s(t) and c(t). Specifically, if Ts denotes
the sampling period, then we work with the discrete-time signals

s[n] = s(nTs) = A cos(ω0Tsn + φ) (3.32)
c[n] = c(nTs) = ejω0Tsn (3.33)

As shown below, when Ts is small, the correlation between s(t) and c(t) can be approximately
computed from the correlation between s[n] and c[n]. Let {n1, . . . , n2} denote the discrete-
time interval corresponding to the continuous-time interval [t1, t2], and let N = n2 − n1 +1
denote the number of samples taken in the interval [t1, t2], so that t2 − t1 ≈ NTs. Then,

C(s, c) =
∫ t2

t1

s(t) c∗(t) dt (3.34)

=
n2∑

n=n1

∫ (n+1)Ts

nTs

s(t) c∗(t) dt (3.35)

≈
n2∑

n=n1

∫ (n+1)Ts

nTs

s(nTs) c∗(nTs) dt (3.36)

=
n2∑

n=n1

s(nTs) c∗(nTs)Ts (3.37)

=
n2∑

n=n1

s[n] c∗[n] Ts (3.38)

= Cd(s, c)Ts (3.39)

where the approximation leading to the third relation is valid because Ts is small, and
consequently the signals s(t) and c(t) change little over each Ts second sampling interval,
and where we use Cd(s, c) to denote the correlation between the discrete-time signals s[n]
and c[n], to distinguish it from the correlation between continuous time signals s(t) and
c(t). We see from this derivation that the continuous-time correlation is approximately the
discrete-time correlation multiplied by the sampling interval, i.e.

C(s, c) ≈ Cd(s, c)Ts (3.40)

We will use this value of correlation in equations (3.30) and (3.31) to estimate the amplitude
and phase of a continuous-time sinusoid.

In the laboratory assignment, we will be implementing an “amplitude and phase cal-
culator” (APC) as a Matlab function. A diagram of this system is shown in Figure 3.2.
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Amplitude and
Phase Calculator

(APC)

Signal vector

Support vector

Frequency

Amplitude

Phase

Figure 3.2: System diagram for the “amplitude and phase calculator.”

The system takes three input parameters. The first is the signal vector which contains the
sinusoid itself. The second is the support vector for the sinusoid. The third input parameter
is the frequency of the reference sinusoid in radians per second. Note that for the system’s
output to be exact, the input sinusoid must be defined over exactly an integer number of
fundamental periods.

The system outputs the sinusoid’s amplitude and its phase in radians. The system
calculates these outputs by first computing the in-place correlation given by equations (3.37)
or (3.38). Then, this correlation value is used with equations (3.30) and (3.31) to compute
the amplitude and phase. Note that in equation (3.30), we need to replace t2 − t2 with
N = n2 − n1 + 1 when implementing in discrete time.

3.2.4 Determining the frequency of a target sinusoid

Suppose now that we are given the task of making a system that automatically determines
the frequency of a target sinusoid. It turns out that correlation can help us with this
problem as well. Consider the following case. Let the target sinusoid be defined by s(t) =
A cos(ωst + φ), where ωs, A, and φ are all unknown. We correlate s(t) with a complex
exponential signal, c(t) = ejωct, with frequency ωc, where ωs 	= ωc:

C(s, c) =
∫ t2

t1

s(t)c∗(t) dt (3.41)

=
∫ t2

t1

A cos(ωst + φ)e−j(ωct)dt (3.42)

=
∫ t2

t1

A

2

[
ej(ωst+φ) + e−j(ωst+φ)

]
e−j(ωct) dt (3.43)

=
A

2

∫ t2

t1

ej[(ωs−ωc)t+φ] + e−j[(ωs+ωc)t+φ] dt (3.44)

=
A

2

[
1

ωs − ωc
ej[(ωs−ωc)t+φ] +

1
ωs + ωc

e−j[(ωs+ωc)t+φ]

]t2

t1

(3.45)

Here, let us make a simplifying assumption and assume that (ωs + ωc) is sufficiently large
that we can neglect the second term. Then, we have

C(s, c) ≈ A

2(ωs − ωc)

[
ej[(ωs−ωc)t2+φ] − e−j[(ωs−ωc)t1+φ]

]
(3.46)

The resulting equation depends primarily on the frequency difference (ωs −ωc) between the
target sinusoid and our reference signal. Though it is not immediately apparent, the value
of this correlation converges to the value of equation (3.29) as the (ωs−ωc) approaches zero.
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Consider now the length-normalized correlation, C̃(s, c), defined as

C̃(s, c) =
C(s, c)
t2 − t1

. (3.47)

One can see from equation (3.29) that when the reference and target signals have the same
frequency, the length-normalized correlation does not depend on the length of the signal.
However, when the signals have different frequencies, one can see from equations (3.46)
and (3.47) that the magnitude of the length-normalized correlation becomes smaller as
we correlate over a longer period of time. (This happens more slowly as the frequency
difference becomes smaller.) In the limit as the correlation length goes to infinity, the
length-normalized correlation goes to zero unless the frequencies match exactly. This is a
very important theoretical result in signals and systems.

Another special case occurs when we correlate over a common period of the target and
reference signals. This occurs when our correlation interval includes an integer number of
periods of both the target signal and reference signal. In this case, the correlation in equation
(3.46), for signals of different frequencies, is identically zero8. Of course, the correlation is
not zero when the frequencies match. Note that this is the same condition required for
equation (3.29) to be exact.

How does all of this help us to determine the frequency of the target sinusoid? The
answer is perhaps less elegant than one might hope; basically, we “guess and check”. If
we have no prior knowledge about possible frequencies for the sinusoid, we need to check
the correlation with complex exponentials having a variety of frequencies. Then, whichever
complex exponential yields the highest correlation, we take the frequency of that complex
exponential as our estimate of the frequency of the target signal. In the next section, we
will formalize this algorithm.

A frequency estimation algorithm

Suppose that we have a continuous-time target sinusoid s(t) with support [0, T ] with un-
known amplitude, frequency, and phase. To estimate these parameters, we’ll calculate the
length-normalized correlation between this signal and reference complex exponentials with
various frequencies over the signal’s T second length. Then, we look for the frequency that
produces the largest correlation.

We choose the frequencies of these complex exponentials to be multiples 1/T so that the
correlation is over an integer number of periods of each complex exponential. That is, the
frequencies will be 1/T, 2/T, . . .. As in the previous subsection, we’ll need to approximately
compute the correlation from samples of s(t) and each reference exponential, taken with some
small sampling interval Ts. For convenience we’ll take N samples and choose Ts = T/N for
some large even integer N . With samples taken at intervals of Ts seconds, we cannot hope
to do a good job of correlating with complex exponentials with very high frequency. The
rule of thumb that you will learn in Chapter 4 is that, at the very least, two samples are
needed from each period of the signal being sampled. Therefore, the highest frequency with
which we will correlate is, approximately, 1/(2Ts). Specifically, we will correlate s(t) with
complex exponentials at frequencies

1
T

,
2
T

, . . . ,
N

2T
=

1
2Ts

(3.48)

The University of Michigan, All rights reserved 67



Laboratory 3 May 24, 2002, Release v3.0 EECS 206

Frequency,
Amplitude, and
Phase Estimator

(FAPE)

Signal vector

Support vector

Amplitude
Phase

Frequency

Vector of
Correlations

Figure 3.3: System diagram for the “frequency, amplitude, and phase estimator.”

Then, for k = 1, 2, . . . , N/2, the length normalized correlation of s(t) with the complex
exponential at frequency k

T is (using equations (3.37), (3.38) and (3.47))

X[k] ≈ 1
T

N−1∑
n=0

s(nTs) e−j2π k
T nTsTs (3.49)

=
1
N

N−1∑
n=0

s[n] e−j2π k
N n (3.50)

where we have used the fact that Ts/T = 1/N and where we have denoted the result X[k]
because this is the notation used in future labs for the last formula above. Thus, the output
output of these correlations is the set of N/2 numbers X[1], . . . , X[N/2]. Remember that
X[k] will generally be complex. To estimate the frequency of the target sinusoid, we simply
identify the value of k for which |X[k]| is largest. With kmax denoting this value, our
estimated frequency, ωest, is

ωest = 2π
kmax

T
= 2π

kmax

NTs
(3.51)

Now that we have estimated the frequency, we should also be able to estimate the
amplitude and phase as well. In fact, we have almost calculated these estimates already.
From equations (3.30) and (3.31), they are:

Aest = 2|X[kmax]| (3.52)
φest = angle(X[kmax]) (3.53)

There is one potential problem here, however. Previously, we assumed the frequency was
known exactly when determining the amplitude and phase; now, we only know the frequency
approximately. In the laboratory assignment, we will see the effect of this approximation.

In the laboratory assignment, we will be developing a system that can automatically
estimate the amplitude, phase, and frequency of a sinusoid. A block diagram of the “fre-
quency, amplitude, and phase estimator” (FAPE) system is given in Figure 3.3. Unlike the
APC, this system takes only two input parameters: a signal vector and the corresponding
support vector. The system has four output parameters. The first three are the estimates
of the frequency, amplitude, and phase of the input sinusoid. The fourth is the vector of
correlations X[1], . . . , X[N/2] produced by the correlations. It is often useful to examine
this vector to get a sense of what the system is doing.
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Estimating doppler shift

When a sinusoidal transmitted signal reflects off an object moving towards the transmitter
at speed vo, the signal returned to the transmitter is again a sinusoid, but with the higher
frequency

ωr = ωt ∗ v

v − vo
(3.54)

where ωt is the original frequency of the transmitted signal and v is the speed of propagation
in the given medium. This is called the Doppler shift phenomenon. If one measures ωr,
e.g. with FAPE, then one can use equation (3.54) to compute the speed of the object vs,
assuming of course, that ωt and v are known. Indeed, this is how radar systems are able
to measure the speed of automobiles, airplanes, baseballs, wind, etc. In the lab assignment
you will be asked to estimate the velocity of an underwater object from a reflection of a
sonar signal.

3.3 Some Matlab commands for this lab

• Constructing complex numbers: Matlab represents all complex numbers in rect-
angular form. To enter a complex number, simply type 5 + 6*j (for instance). Note
that both i and j are used to represent

√−1 (unless you have used one or the other as
some other variable). To enter a complex number in polar form, type 2*exp(j*pi/3)
(for instance).

You may be wondering how Matlab actually works with complex numbers, given
that complex numbers are, in general, the sum of a real number and an imaginary
one. The fact is that the imaginary component of a complex number is in fact a real
number, which Matlab stores in the usual way. It thinks of a complex number as a
pair of floating point numbers, one to be interpreted as the real part and the other to
be interpreted as the imaginary part. And it knows the rules of arithmetic to apply
to such pairs of numbers in order to do what complex arithmetic is supposed to do.

• Extracting parts of complex numbers: If z contains a complex number (or an
array of complex numbers), you can find the real and imaginary parts using the com-
mands real(z) and imag(z), respectively. You can obtain the magnitude and angle
of a complex number (or an array of complex numbers) using the commands abs(z)
and angle(z), respectively.

• Complex conjugation: To compute the complex conjugate of a value (or array) z,
simply use the Matlab command conj(z).

• Finding the index of the maximum value in a vector: Sometimes we don’t just
want to find the maximum value in a vector; instead, we need to know where that
maximum value is located. The max command will do this for us. If v is a vector and
you use the command

>> [max_value, index] = max(v);

the variable max_value will contain largest value in the vector, and index contains
position of max_value in v.
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• Matlab commands to help you visually determine the amplitude, fre-
quency, and phase of a sinusoid: Sometimes you may need to determine the
frequency, phase, and amplitude of a sinusoid from a Matlab plot. In these cases,
there three commands that are quite useful. First, the command grid on provides
includes a reference grid on the plot; this makes it easier to see where the sinusoid
crosses zero (for instance). The zoom command is also useful, since you can drag
a zoom box to zoom in on any part of the sinusoid. Finally, you can use axis in
conjunction with zoom to find the period of the signal. To do so, simply zoom in on
exactly one period of the signal and type axis. Matlab will return the current axis
limits as [x_min, x_max, y_min, y_max].

• Calling apc: The function apc, which you will be writing in this laboratory, estimates
amplitude and phase of a continous-time target sinusoid from its samples. The input
parameters are a (sampled) target sinusoid s, the sinusoid’s support vector t, and the
continuous-time frequency w0 in radians per second. We call apc like this:

>> [A,phi] = apc(s,t,w0);

Note that a compiled version of this function, called apc_demo.dll, is also available.

• Calling fape: The function fape, which you will be writing in this laboratory, imple-
ments the frequency, amplitude, and phase estimator system. This function accepts
the samples of a target continuous-time sinusoid s and it’s support vector t, like this:

>> [frq,A,phi,X] = apc(s,t);

where frq is the estimated frequency in radians per second, A is the estimated ampli-
tude, phi is the estimated phase, and X is the vector of correlations, X[1], . . . , X[N/2]
between s and each reference complex exponential. Note that a compiled version of
this function called, fape_demo.dll, is also available.

3.4 Demonstrations in the Lab Section

• Complex Numbers in Matlab

• Sinusoids and complex exponentials in Matlab

• Sinusoidal correlation: matching frequencies

• Sinusoidal correlation: different frequencies

• FAPE: the Frequency, Amplitude, and Phase Estimator

3.5 Laboratory Assignment

1. (Understanding sinusoids) Execute the following commands:

>> t = linspace(-0.5, 2, 1000);
>> plot(t,cos(linspace(-7.5,27,1000)),'k:');
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(a) (Extracting sinusoid parameters) Visually identify the amplitude, continuous-
time frequency, and phase of the continuous-time (sampled) sinusoid that you’ve
just plotted.

• Include your estimated values in your report. Reduce your answers to decimal
form.

• What is the phasor that corresponds to this sinusoid? Write it in both
rectangular and polar form. (Again, keep your answers in decimal form.
You should use Matlab to perform these calculations.)

(b) (Checking your parameters) Verify your answers in the previous problem by gen-
erating a sinusoid using those parameters and plotting them on the above graph
using hold on. Use t as your time axis/support vector. The new plot should be
close to the original, but it does not need to be exactly correct.

• Include the resulting graph in your report. Remember to include a legend.

2. (The Amplitude and Phase Calculator) In this problem we will complete and test a
function which implements the “Amplitude and Phase Calculator”, as described in
Section 3.2.3. Download the file apc.m. This is a “skeleton” M-file for the “amplitude
and phase calculator”. Also, generate the following sinusoid (s_test) with its support
vector (t_test):

>> t_test = 0:0.01:.99;
>> s_test = 1.3*cos(t_test*10*pi + 2.8);

(a) (Identify sinusoid parameters by hand) What are the amplitude, frequency in
radians per second, and phase of s_test?

• Include your answers in your lab report.

(b) (Write the APC) Complete the function apc. You should use the signal s_test
to test the operation of your function. You may also wish to use the compiled
function apc_demo.dll to test your results on other sinusoids.

• Include the code for apc in your Matlab appendix.

(c) (Test APC on a sinusoid with unknown parameters) Download the file lab3_data.mat.
This .mat file contains the support vector (t_samp) and signal vector (s_samp)
for a sampled continuous-time sinusoid with a continuous-time frequency of ω0 =
200π radians.

• From t_samp, determine the sampling period, Ts, of this signal.
• Use apc9 to determine the amplitude and phase of the sinusoid exactly.

(d) (APC in a non-ideal case) What happens if we use apc to correlate over a non-
integral number of periods of our target sinusoid? We will investigate this ques-
tion in this problem and the next. First, let’s examine a single non-integral
number of periods. Generate the following sinusoid:

>> apc_support = 0:0.1:8;
>> apc_test = cos(apc_support*2*pi/3);

9If you failed to correctly complete apc.m, you may use apc demo.dll for the following problems. If you
use the demo function, please indicate this in your lab report.

The University of Michigan, All rights reserved 71



Laboratory 3 May 24, 2002, Release v3.0 EECS 206

This is a sinusoid with a frequency of ω0 = 2π
3 radians per second, unit amplitude,

and zero phase shift.
• Plot apc_test and include the plot in your report.
• What is the fundamental period of apc_test?
• Approximately how many periods are included in apc_test?
• Use apc to estimate the amplitude and phase of this sinusoid. What are the

amplitude and phase errors for this signal?
(e) (APC in many non-ideal cases) Now we wish to examine a large number of differ-

ent lengths of this sinusoid. You will do this by writing a for loop that repeats
the previous part for many different values of the length of the incoming sinu-
soid. Specifically, write a for loop with loop counter support_length ranging
over values of 1:0.1:50 seconds. In each iteration of the loop, you should
i. Set apc_support equal to 0:0.1:(support_length-0.1),
ii. Recalculate apc_test using the new apc_support,
iii. Use apc to estimate the amplitude and phase of apc_test, and
iv. Store these estimates in two separate vectors.
Put your code in an M-file script so that you can run it easily.
• Include your code in the Matlab appendix.
• Use subplot to plot the amplitude and phase estimates as a function of

support length in two subplots of the same figure. You should be able to
see both local oscillation of the estimates and a global decrease in error with
increased support length.

• At what support lengths are the amplitude estimates correct (i.e., equal to
1)?

• What minimum support length do we need to be sure that the phase error
is less than 0.01 radians?

3. (The Frequency, Amplitude, and Phase Estimator) In this problem, we’ll explore the
frequency, amplitude and phase estimator, as described in Section 3.2.4. Download
the file fape.m. This is a “skeleton” M-file for the “frequency, amplitude, and phase
estimator” system.

(a) (Write the FAPE) Complete the fape function. You can use t_test and s_test
from Problem 2 along with the compiled fape_demo.dll to check your function’s
results.
• Include the completed code in your report’s Matlab appendix.
• What are the frequency (in radians per second), amplitude, and phase esti-

mates returned by fape for t_test and s_test? Are these estimates correct?
• Use stem and abs to plot the magnitude of the vector of correlations returned

by fape versus the associated frequencies.
• What do you notice about this plot? What can you deduce from this fact?

(Hint: Consider what this plot tells you about the returned estimates.)
(b) (Running FAPE on in a non-ideal case) In this problem, we’ll see what happens

to FAPE when the target sinusoid does not include an integral number of peri-
ods. lab3_data.mat contains the variables fape_test_t (a support vector) and
fape_test_s (its associated sinusoidal signal). Run fape on this signal.

72 The University of Michigan, All rights reserved



EECS 206 May 24, 2002, Release v3.0 Laboratory 3

• What are the frequency in radians per second, amplitude, and phase esti-
mates that are returned?

• Use stem and abs to plot the magnitude of the returned vector of correlations.
• Plot fape_test_s and a new sinusoid that you generate from the parame-

ter estimates returned by FAPE on the same figure (using hold on). Use
fape_test_t as the support vector for the new sinusoid. Make sure you use
different line types and include a legend.

• What can you say about the accuracy of estimates returned by FAPE?
• Compare the plot of the correlations generated in this problem and in Prob-

lem 3a. What do these different plots tell you?

Food for thought: Investigate the error characteristics of fape as you did with
apc in problem 2e. Do the frequency, amplitude, and phase estimates improve
as we use longer support lengths? Which parameter is exhibits the most error?
What does the vector of correlations, X[k], tell you about these estimates?

(c) Measuring speed via Doppler shift. A sonar transmitter in the ocean emits a
sinusoidal signal with frequency 1000 Hz, and the signal reflects off an object
moving toward the transmitter. The received signal can be found in the Mat-
lab workspace lab3_data.mat. The signal vector is called s_sonar and the
support vector is t_sonar. The speed of sound in salt water is approximately
1450 meters/second. (Note: because the signal is rather long, it may take a little
while for FAPE to run.)

• Estimate the speed of the object.

Food for thought: Use randn to add some random noise to s sonar and observe
how your estimate changes. How much noise do you need to add to produce an
error? Does the system degrade gracefully? (That is, is the amount of error
proportional to the amount of noise?)

4. On the front page of your report, please provide an estimate of the average amount of
time spent outside of lab by each member of the group.
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