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1. Introduction

The following material gives some of the mathematical background for two of the tools we 
use to determine the spectrum of a signal. 

The Fourier Series (FS) and the Discrete Fourier Transform (DFT) should be thought of as 
playing similar roles for periodic signals in either continuous time (FS) or discrete time (DFT). 
Both analyze signals into amplitude, phases, and frequencies of complex exponentials; both syn-
thesize signals by linearly combining complex exponentials with appropriate amplitude, phase, 
and frequency. Finally, both transforms have aspects that are extremely important to remember 
and other aspects that are important, but can be adjusted as necessary. As we work through some 
of the details, we’ll identify these very important and the not so important aspects.

2. The Fourier Series

2.1. Synthesis: Building a periodic signal from a set of complex exponentials

Let  be a periodic continuous-time signal with period . The Fourier series is a decom-
position of such periodic signals into the sum of a (possibly infinite) number of complex exponen-
tials whose frequencies are harmonically related. Specifically,

(1)

where  is called the fundamental and the  are complex numbers.

We call Eq (1) a synthesis equation, because it tells us how to build, construct, or synthesize a 
periodic signal from other signals. In the present case, the building blocks are complex exponen-
tials, , and the method of constructing  is to add scaled or weighted versions 
of each complex exponential according to the set of expansion coefficients . We also see 
that , the frequencies of the complex exponentials, are integer multiplies of , the fundamen-
tal.

According to the synthesis equation, we can distinguish between periodic signals in two 
ways. The first is by the period of the signal, . Signals with different periods are built from dif-
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ferent sets of complex exponentials, . But if two signals have the same period, 
how are we to differentiate between them? The synthesis equation suggests that two signals with 
the same period are different if their  sets differ. This, then, is the second way in which we 
can distinguish between two periodic signals.

2.1.1. But the textbook says...

You should compare Eq (1) with the synthesis equation found in section 3.4 of the DSP First 
textbook. At first blush, they look quite different. The text claims that all continuous-time signals 
with period  can be expanded as

(2)

Examining Eq (2), we see that the set of building blocks are amplitude-scaled ( ) phase-shifted 
( ) cosines over the set of frequencies , where . However, Eq (1) states that the set of 
building blocks are complex amplitude-scaled  complex exponentials over the set of fre-
quencies , where  is integer. Who’s wrong?

It turns out that the apparent differences between Eq (1) and Eq (2) are one of those details of 
lesser importance in thinking about the Fourier Series. To see why, let’s re-write Eq (2), the syn-
thesis equation from the textbook, using Euler’s identity for the cosine. Accordingly,

(3)

Note that in arriving at the expression in the final line of Eq (3), we’ve inserted a negative on the 
indexing of the amplitude and phase terms, since Eq (2) refers to amplitudes over non-negative 
index values.

In comparing the final line of Eq (3) with Eq (1), we see that the two can be made identical if 
we let

(4)
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and recognize that the  in Eq (3) is actually the amplitude term for a complex exponential with 
a frequency of 0 Hz, e.g., . Accordingly, if we let

(5)

we have that

(6)

so that any periodic signal can be expanded using either equation, subject to the identities found in 
Eq (4) and Eq (5). So the textbook and our original formulation above say exactly the same thing.

2.1.2. But other textbooks say...

Some of you have already noticed that Eq (2) in the DSP First textbook also differs from 
expressions for the Fourier Series found in some linear algebra books. In the latter case, we might 
find a synthesis equation of the form

(7)

where the  and  are real. We’ll leave it as an exercise for you to establish the appropriate 
relationships between  and , the cos and sin expansion coefficients, and the .

2.1.3. So what’s important?

Whether it is a sum of cosines with different amplitude and phase, the sum of cosines and 
sines with different amplitudes, or the sum of complex exponentials with different complex 
amplitudes, the fact that Eq (1), Eq (2), and Eq (7) all involve sums of sinusoidal, oscillatory func-
tions is the take-home message about the Fourier Series as we use it in signal processing. We 
build signals from functions that exhibit simple harmonic motion. The different forms require 
some book keeping to keep track of the coefficients, but they are interchangeable. Knowing one 
set of coefficients allows us to find either of the other two.

2.2. Analysis: Decomposing a given signal into a set of complex exponentials

2.2.1. Existence in theory doesn’t always mean useful in practice

Some results in mathematics concern existence. You may have learned in algebra, for exam-
ple, that there were up to  distinct (complex) numbers that satisfied the expression

(8)

These numbers are called the roots of the -th order (or degree) polynomial and is called the Fun-
damental Theorem of Linear Algebra. You may also recall that the quadratic formula gives you a 
method for finding the roots of a 2nd-degree (quadratic) polynomial. Ever wonder if formulas 
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exist for arbitrary ? It turns out that they don’t. Mathematicians can tell us that the roots exist, 
but they can’t specify a formula for calculating the roots exactly for .

The name “Fourier” would never be mentioned in systems engineering if all we had were Eq 
(1), Eq (2), or Eq (7). Like the Fundamental Theorem of Linear Algebra above, the fact that Fou-
rier coefficients exist is interesting, in theory, but remains of little use to us without having a 
method for discovering their value. In contrast to roots of polynomials, which exist but have no 
closed-form solution, a formula exists for calculating the Fourier coefficients . Being able to 
analyze a signal into its constituent parts and then synthesize the signal from these parts is one of 
the primary reasons why the name “Fourier” appears throughout communications, controls, signal 
processing, circuits, electromagnetics, optics, biological systems, econometrics, etc.

2.2.2. The Analysis Equation

The Fourier coefficients for Eq (1), the first version of the synthesis equation, can be deter-
mined by evaluating the following integral.

(9)

Note that this integral requires knowledge of , the period of the signal, and a closed-form rep-
resentation for the signal itself.

2.2.3. Analysis equation from the textbook

In Section 2.1, we established a relationship between the ‘s and the ‘s in the textbook. 
If we substitute this relationship into Eq (9), do we obtain the textbook’s analysis equation? This 
question is important, since we hope that the pairing of analysis and synthesis equations lead us to 
the same results. Accordingly, from Eq (5)

(10)

so that upon substituting into Eq (9), we have that

(11)

Similarly, from Eq (4)
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(13)

where . Therefore, the pairs of analysis/synthesis equations are consistent with each 
other. Neither pair gives us more or less information about the signal. 

2.3. Doing the reality check: Are the analysis and synthesis equations consistent?

We can perform a reality check on Eq (1) by plugging it into Eq (9). If the two equations are 
consistent, then we should obtain an identity. Accordingly, in the sequence of steps below, we 
begin with Eq (9), insert the synthesis equation in place of , and carry out the expansion.

(14)

At this point, it looks like we have a mess. The left hand side is the single variable , whereas 
the right hand side depends on an infinite collection of the ‘s. Our best hope is to evaluate the 
integral on the right hand side and hope for some simplification. Recalling the general mathemat-
ical result
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(17)

Accordingly,

(18)

When , substitution into Eq (16) leads to a zero in the denominator - not the best situa-
tion to find yourself in! However, we wouldn’t have found ourselves in this situation if we had 
noted in the original equation that

(19)

when . 

Using the results, we return to Eq (14) and break up the summation into two parts,  and 
 and arrive at exactly the result we had sought:

(20)

In conclusion, we see that the analysis and synthesis equations are consistent. The key trick to 
pushing through the result is Eq (17): this identity allowed us to achieve the important reduction 
in the expression of the right hand side from an infinite number of the ‘s to the single number, 

.

2.4. Additional observations

Note, our additional observations are organized as follows. Each subsection begins with a 
key result and a brief discussion of why the result is important. The “Mathematical Development” 
material that follows provides an argument for why the result holds. This material can be passed 
by on first reading. You should go back, however, and see how complex numbers, integration, 
and Fourier series are used to establish the results.

2.4.1. Conjugate symmetry

For real-valued signals, there’s an important simplification in the Fourier coefficients. Spe-
cifically:
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(21)

This is a very useful result since it means we only have to compute the Fourier coefficients for 
, which is a 50% savings in work.

The conjugate symmetry also forces even and odd symmetry in the magnitude and phase 
spectra of the signal. To see this, let’s write the Fourier coefficient in polar form

(22)

so that

(23)

Therefore, the magnitude spectrum has even symmetry about the origin, , whereas the 
phase spectrum has odd symmetry.

Mathematical development. We show Eq (21) as follows. Take the conjugate of 

(24)

and use the fact that the conjugate of a product is the product of the conjugates

(25)

The conjugate of a real number is the number itself while the conjugate of  is . Accord-
ingly,

(26)

Finally, to get the right hand side into the legitimate form of the analysis equation, we rewrite it as

(27)

2.4.2. Why the scalars?

As you work further with Fourier concepts, be they the Fourier Series or related transforms 
such as the Fourier Transform, the Discrete Fourier Transform, or the Discrete Time Fourier 
Transform, you will find that textbooks differ with respect to the scalars that appear in the analy-
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sis and synthesis equations. In our development, for example, the analysis equation has the scalar 
 appearing in it, e.g,.

(28)

whereas the synthesis equation is scaled by 1, e.g., 

(29)

Other textbooks may scale the analysis equation by 1 and the synthesis equation by . Still other 
textbooks may scale both the analysis and synthesis equations by . Who’s right?

The answer is that all three options are correct, as long as we consider the analysis and syn-
thesis equations as pairs . When used as a pair, you won’t result in any mistakes. However, mixing 
and matching the two equations can lead to problems. Specifically, synthesizing a signal from the 
wrong pairing of analysis/synthesis equations will result in a signal that either has too little or too 
much power.

Mathematical development.

One constraint on the scaling factors is that the analysis-synthesis equations must be consis-
tent, as argued in Section 2.3. That is, if we consider the pair
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(32)

Accordingly, we see that any of the pairs

(33)

will work, along with an infinite number of other alternatives. The fact that one of these three 
options is generally found in the literature, rather than the infinite number of alternatives, is due to 
the linkage between the concepts of Fourier transforms, algebra, and the intrinsic measure of 
length provided by the variable .

2.4.3. Conservation of power

We’ve seen that the power of a periodic signal is an important measure. One of the interest-
ing features of the Fourier series is that we can compute the power of the signal directly from the 
Fourier coefficients. Specifically:

(34)

This result is known as Parseval’s Theorem. The significance of this result is that the power of the 
signal is directly dependent upon the magnitude-square of its Fourier coefficients. You can’t 
increase one without simultaneously increasing the other. Similarly, if you decrease the gain of 
some of the frequencies in the signal while keeping the gain of the other frequencies in the signal 
the same, you will always decrease the signal’s power. 

Mathematical Development. Using our tools, we prove this relationship as follows. We first 
expand one of the  using the synthesis equation
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and recognize, quite conveniently, that the integral on the right is the complex conjugate of the 
expression for 

(37)

So that we have

(38)

our desired result.

2.4.4. Orthogonality

When , the Fourier coefficient of a real-valued, periodic signal, is zero, the signal does not 
contain a component at the frequency . What if ? Does this tell you anything 
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(41)

This is an important enough point to break out as a separate definition. We say that two peri-
odic signals,  and , with period  are orthogonal if and only if

(42)

In light of this definition, Eq (41) shows that the complex exponential functions  
are orthogonal over the period . Besides the convenient 0’s that result, the impact of orthogo-
nality is that knowing how the periodic waveform is built at a particular complex exponential tells 
you nothing about how it is built at every other complex exponential function (up to the complex 
conjugate of the given complex exponential). Put in another way, you are free to choose the 
weights for each complex exponential when forming the signal, since the complex exponentials 
are orthogonal to each other.

Orthogonality turns out to be key in how we think about signals and in how we transmit 
information about signals. If you’re used to thinking about the 90-degree angle between the  x- 
and y-axis in a two-dimensional plot, you’re already used to thinking about orthogonality. We say 
that the two axes are orthogonal, and note that knowing the x-coordinate of a point tells you noth-
ing about its y-coordinate. Fourier series are just a generalization of this idea. 

They are efficient, in that each coefficient carriers information about itself and no other coef-
ficient. They are also non-robust, in that if you lose one of the coefficients, you can’t recover it 
based on knowledge of the other coefficients. In communications engineering, we look trade-offs 
between efficient representations and robust representations when transmitting or storing infor-
mation over noisy, lossy channels such as telephone lines or magnetic media.

2.4.5. What does the Fourier series say about non-periodic waveforms?

When a signal is non-periodic, what prevents us from using the Fourier series to represent it? 
Nothing, as long as we properly interpret what the representation says. Given any arbitrary signal, 

, we can take a chunk of that signal of length  beginning with some starting time 

(43)

and find the Fourier coefficients of . The Fourier coefficients indicate that  
can be synthesized by summing a possibly infinite set of sinusoids. Does this mean that  is so 
constructed? The answer is definitely “No”. The signal that is constructed under Fourier synthesis 
is  which is defined for all time by the periodicity property
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So, unless  is the same as , in which case we had a periodic signal to 
begin with, the two signals are different and the Fourier coefficients say little about the frequency 
content of  over its entire length. However, the coefficients do say something about the fre-
quency content of  over the chunk of time we’ve taken. This idea of looking at the frequency 
content of a signal around local chunks of time is fundamental to time-frequency analysis. The 
textbook introduces the spectrogram as a type of time-frequency analysis.

2.5. Terminology: Fourier Series and Inverse Fourier Series

Consistent with the textbook, we’ve talked about the Fourier series as consisting of two com-
ponents: synthesis and analysis. The broader community uses a slightly different terminology in 
which the Fourier analysis of a periodic waveform is accomplished through the Fourier Series 
and the Inverse Fourier Series. In this case, the “Fourier Series” refers to what we have called the 
analysis equation and the “Inverse Fourier Series” refers to what we have called the synthesis 
equation.

3. The Discrete Fourier Transform

The Discrete Fourier Transform serves the same purposes for discrete-time signals as the 
Fourier Series does for continuous-time signals. It decomposes (analyzes) signals into complex 
exponentials in the discrete-time domain and it composes (synthesizes) discrete-time signals from 
linear combinations of such complex exponentials.

3.1. Circular Structure of Frequency in Discrete Time

Time marches on. We never get younger; we only get older. Yet, superimposed on our con-
cept of linear time is “circular” time. Measured in hours of the day, time increases, starting with 
midnight, until 12 (or 24 hours) later, depending on how you keep time, when time becomes small 
again. We’re accustomed to speaking of linear time in this circular fashion, and we never confuse 
the two ideas.

When we encounter frequency in the discrete-time domain, we also find a circular structure. 
Consider the two complex exponentials with frequencies  and :

(45)

Clearly, their frequencies differ by , but

(46)

since

(47)
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so that the two signals are identical. Like time on a clock, the frequency of complex exponentials 
in the discrete-time domain moves around a circle, from  to . Once it reaches , like time 
on a 24-hr. clock, increases in frequency merely change where the “hand” points on our -radi-
ans clock.

In continuous time, we built cosines and sines from pairs of complex exponentials. We can 
do so as well in discrete time, e.g.,

(48)

only how are we to interpret negative frequency, when positive frequency in discrete time is cir-
cular? The answer is that we treat negative frequency in exactly the same way that we treat time 
on the clock. If we add hours, we move clockwise; if we subtract hours, we move counterclock-
wise. Accordingly, negative frequencies operate “in the opposite direction” to positive frequen-
cies, ranging from  to .

The consequence of building our cosines from complex exponentials in the discrete-time 
domain is that we don’t have as many unique frequencies as we might have thought. The problem 
is that as we let the positive frequency go from 0 to , the negative frequency goes from 0 to 

. Where do we get into trouble? Let’s return to the clock analogy. 2 AM is two hours added to 
midnight or 22 hours taken away from midnight. Thus, subtracting 22 hours is the same as adding 
two hours. In our -radians clock, we have that

(49)

To prevent the negative-frequency complex exponential from becoming the positive-frequency 
one, and vice versa, we need the two complex exponentials to stay within a range of  radians, 
rather than . Therefore, the range of frequencies for real-valued trigonometric functions, e.g., 
sines and cosines. is  to  in the discrete-time domain. In terms of our 24-hr. clock, the same 
restriction limit hours before and hours after midnight to 12, instead of 24. In this manner, hours 
before midnight are the PM prior to midnight, while hours after midnight are the AM following 
midnight.

The circularity of frequency in the discrete-time domain is a concept that plays out repeatedly 
in computer engineering. For example, the representation of numbers on a computer is achieved 
using a sequence of bits, that is, a bit string. Since the number of bits is finite, the collection of 
numbers represented by a bit string must have a smallest and a largest. Once we exceed the largest 
and attempt to become smaller than the smallest, we find ourselves back in the pack of our valid 
numbers. Modular arithmetic is the name we assign to how addition, subtraction, multiplication 
and division are performed over such finite sets of numbers. As fancy a name it might be, modular 
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arithmetic is simply the mathematics of time on the clock; if you’re ever stuck, just translate your 
problem to the clock, and you should gain some insight into how your problem should be solved.

We draw this discussion to a close by noting the orientation of the two “clocks” shown in 
Figure 1. Convention has it (Alice in Wonderland notwithstanding) that time advances in a clock-
wise direction (rotation to the right). For the case of complex exponentials, we’re free to choose 
whatever coordinate system we wish. A useful convention is to represent the frequency of the 
complex exponential by

(50)

in which case, “12” rotates to the “3 o’clock” position to represent the frequency “0”, since

(51)

and positive increments in frequency rotate to the left (counter-clockwise) whereas negative 
increments in frequency rotate to the right (clockwise). Examining the figure, we can see the 
problem when the rotation is greater than , since the negative and positive frequencies encroach 
on each other’s domain.

3.2. The Synthesis Equation

The brief discussion of the structure of frequency in discrete time helps us understand the 
synthesis equation for the Discrete Fourier Transform. Specifically, any discrete-time signal with 
period  can be constructed according to

(52)

Without some knowledge about frequency in discrete time, Eq (52) looks to be wrong when com-
pared with Eq (1) for continuous time. First, the bounds of summation differ. Contrary to Eq (52), 
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Figure 1. Circular time and circular frequency. Oriented with respect to the standard 12-hr. clock, positive increments 
in time are clockwise in motion, whereas negative increments in time are counter-clockwise. Oriented with respect to 
the real and imaginary axes, positive increments in the frequency of a complex exponential are counter-clockwise, 
whereas negative increments in frequency are clockwise.
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continuous-time periodic signals are constructed from up to an infinite number of harmonically-
related complex exponentials. Discrete-time periodic signals appear to require only a finite num-
ber of such components. Similarly, continuous-time periodic signals are constructed from posi-
tive- as well as negative-frequency complex exponentials. Discrete-time periodic signals appear 
to require only non-negative frequencies! Have things changed that much when going from con-
tinuous to discrete?

Based on Section 3.1, the answer is “No”. We see that the circular nature of frequency in the 
discrete-time domain means that we can have at most a finite number of harmonically-related fre-
quencies. If we keep multiplying the fundamental frequency  by integers, we’re going to 
eventually exceed  and find ourselves completely around the circle, starting again at small val-
ues of frequency. In addition, negative frequencies do appear in Eq (52), again, because of the cir-
cular nature of frequency in the discrete-time domain. If we adopt the convention that negative 
frequencies occupy the region from  to , whereas positive frequencies occupy the region 
from 0 to , we can use the identity in Eq (49) to rewrite Eq (52) as

(53)

where we need to throw in the floor function to make sure our bounds of summation (which must 
be integer after all) make sense. That is, in the present case

(54)

3.3. Analysis Equation

To build the periodic signal, , requires knowledge of  and the Fourier coefficients 
. The analysis equation provides the means to determine the Fourier coefficients. Specifi-

cally,

(55)

3.4. Putting the two together

As we did with the Fourier series, a good check of the pair of equations is to make sure they 
yield consistent results. Accordingly, we begin with the analysis equation, insert the synthesis 
equation, and then work towards an identity:
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(56)

Re-arranging the order of summation, we have

(57)

The right hand side will equal the left hand side if we can eliminate all of the  save one, the 
 we’re interested in. Considering

(58)

we see that the right hand side can be written more compactly as

(59)

for which the partial sum evaluates to

(60)

When , 

(61)

since  is integer. The result is that

(62)

Proceeding, for the case , , so we skip the partial sum formula and evaluate directly 
to obtain

(63)
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Like the development of the Fourier series, we see from the above arguments that

(64)

which is exactly the result we desired. The two equations do not lead to inconsistent results.

3.5. Additional remarks

A number of the properties of the Fourier Series have parallels in the Discrete Fourier Trans-
form. A good exercise is to follow the outline in Section 2, substitute the DFT, and determine 
which of the results generalize. In particular, note how the scalar generalizes. As you might dis-
cover in the textbook, the placement of  differs with what we presented here. Again, it is a 
matter of convention, you should get used to switching between such conventions, but you should 
always make sure you are using the appropriate pair of analysis and synthesis equations. If you 
don’t, you’re signals with either start blowing up or will fade away to zero! Finally, many text-
books will refer to the analysis equation as the Discrete Fourier Transform of the signal. In this 
case, the synthesis equation is the Inverse Discrete Fourier Transform.

3.6. What about the Fast Fourier Transform (FFT)?

Often, one reads about the FFT instead of the DFT. The FFT has a rich history in its own 
right, but for our purposes, we can summarize the FFT as simply a DFT in which the period  is 
restricted to a certain set of values, such as powers of 2. The reason it is called “Fast” reflects a 
very interesting way of efficiently evaluating the Fourier coefficients. In the case of the DFT,  
multiplies are needed for each of the  Fourier coefficients, so that we say the “order” of the 
algorithm’s complexity is . The FFT cleverly takes advantage of what is called the butterfly 
structure of the DFT when  is a power of two. This results in a smaller number of multiplies 
proportional to .
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