EECS 353 Complex Signals May 21, 2002

1 Goals

1. Complex signals

(a) Definition and graphs
(b) Properties

2. Complex exponential signals: Revisit

(a) Sinusoids of the same frequency
(b) Sinusoids of differing frequencies
i. Beat notes
ii. Spectrum

2 Complex Signals

2.1 Definition and Graphs

A complex signal z(t) or z[n] is a signal of the following form:

Example 2.1

Plotting Graphs of a Complex Signal There are three ways of plotting a complex signal.
1. Plot the real and imaginary parts separately.

2. Plot the magnitude and phase of 4
z(t) = |z(t)‘ej arg z(t)

(i) separately, or (ii) together in the complex plane.
3. Plot it as a 3-D graph—a spiral plot
Example 2.2 Let z,(t) = ¢/>™ on [-1,

!

(a) Plot the real and imaginary parts of z;(t).

N[ —

Using Euler’s formula, we get

21(t) = 7?™ = cos(2nt) + j sin(27t).
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(b) Plot the magnitude and phase of zo(t) separately.
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(c) Plot the magnitude and phase of complex signal z(t) = e(=1+72™ in the complex plane for ¢ € [0, 4].

2(t) = e te?m — |2(t)| =e™", argz(t) =2t
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(d) Plot z5(t) as a 3-D plot

2.2 Properties of Complex Signals

(a) (Support Interval and Duration) The support interval of a complex signal z(t) is the smallest interval
outside which
z(t) =0.
Note that 2(t) =0 <= z(t) =0 and y(¢) = 0.

The duration of z(t) is the size of its support interval.



(b) (Mean Value) z(t) = x(t) + jy(t).

ot —t1 )y,
1 tz t2
= z(t)dt + 7 / t) dt
tz_tl/tl e+ s [y
= M (x) + jM(y).

(¢) (Instantaneous Power)

(d) (Average Power or Mean-Square Value)

MS(2) ! / () dt

Cta—t1 /)y,

- o ra)a

to —1t1 Jy,
= MS(x)+ MS(y).

(¢) (Energy)

2.3 Correlation of Complex Signals
The correlation between two complex signals zq(t) and 25(t) is defined by

to

C(z1, 22) :/ z1(t)z5(t) dt.

ty
(a) C(z1,22) can be a complex number.
(b) (Warning) C(z1, 22) is order-sensitive. In general, C(z1, 22) = C*(22, 21).
(¢) Energy E(2)

tz t2
E(z) = / 2(t)2*(t) dt = / |2(t)|? dt.

tl tl

Example 2.3 Let z,(t) = e/>™ n=1,2,... on [-3, 1]. A signal s(¢) is given below.

s(t)
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(a) Find C(s, zp).

O(s,20) :/2 s(8)25(t) dt:/2 =it gy
2 7%
—j2mnt |% L
—j2mn -2
_ 1 —jmn jTn
o (e — &™)

= —j127r (cos(—mn) + jsin(—mn) — cos(mn) — jsin(mn))

(b) Find C(u, zy,), where

_ [t <3
u(t) = { 0, otherwise.

From the definition

C(Uazn) = /E u(t)z;(t) dt = /§ te*jQﬂ'nt dt

— ( teijﬂ'nt _ 1 67j27rnt) |%
—j2mn (—j2mn)? -3

_ (="

= omn

We note that ) )
/te“t dt = —te® — —26‘” +c.
a a

3 Complex Exponentials: Revisit

3.1 Sinusoids and Complex Exponentials

Acos(wot + @) <— Aed@ott9) = feiteiwot 0 Ael?  with suppressed wy

rotating phasor phasor
(a) Inverse Euler’s formulas:
el 4 e=10
cosf = 3 ,
el o e J g
sinf = -
32

from

e% = cosf + jsinb,

99 = cos — jsin .



(b) So, z(t) = Acos(wot + ¢) can be thought of as

(i) the real part of Z(t)

(ii) the sum of two rotating phasors that rotate in the opposite directions

Aed(wottd) 4 fo—i(wot+g)

Acos(wot + @) = 5
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(¢) The sum of sinusoids of the same frequency can be found through the sum of corresponding phasors.

K
Z Ay, cos(2m fot + ¢r) = C cos(2m fot + 0),
k=1

where

K
C’ejg = ZAk6j¢k.
k=1

(d) (Negative frequencies)

(i) Sinusoids do not have negative frequencies by definition.

(ii) Complex exponentials (rotating phasors) do. Negative frequencies mean that the phasors rotate
clockwise.

3.2 Complex Exponentials with Differing Frequencies

Are complex exponentials useful for summing sinusoids of differing frequencies?

(a) Yes, in the case of two closely related frequencies

Example: Beat notes

(b) Yes, in the computation of the spectrum of a (not necessarily sinusoidal) signal.



Example 3.1 A beat note is a phenomenon, in which a tone signal (a sinusoid with a single frequency)
shows fading-in/out loudness. This is due to constructive and destructive interferences of the two signals of
similar frequencies. (So, the signal is not a tone—not a pure sinusoid, but rather two or more interfering
tones.)
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Analysis

x(t) = Acos(wit) + A cos(wat)
= 2A cos(At) cos(wet).

When A is small, we hear w, fading in and out.
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Note that w; = w, — A and wy; = w, + A.

x(t) = Acos(wit) + A cos(wat)
= %{Aej“’lt + Aej“’zt}
= AR{ e D)t it Aty
= Aﬂ?{ej“’ct(efjAt + ejAt)}
= AR{e/“'2 cos(At) }
= 2A cos(At) cos(wet).
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