Topics: Filters

- 1. LTI filter description
- 2. Goals of filtering

1 LTI Filters

General Form of LTI Filters:

- (a) Filter Description: $\{b_k\}$
- (b) Input-output relationship by the difference equation:

$$y[n] = \sum_{k=-M_1}^{M_2} b_k x[n-k],$$

where M_1 and M_2 are integers

 $0 \le M_1, M_2 \le \infty.$

 $M_1 + M_2$ are called the *order* of the filter.

Classification:

- (a) FIR or IIR
 - (i) FIR: $M_1, M_2 < \infty$.
 - (ii) IIR: M_1 or $M_2 = \infty$.
- (b) Causal or noncausal
 - (i) Causal: $M_1 = 0$.
 - (ii) Noncausal: $M_1 > 0$.

2 Principal Goals of Filtering

- (a) Signal recovery/Noise reduction
- (b) Spectral shaping
- (c) Inverse filtering
- (d) Signal detection

We focus on signal recovery and spectral shaping.

2.1 Signal Recovery

Scenario

- (a) (Goal) want $\hat{s}[n]$ to be s[n], i.e., recover s[n]Or want to reduce v[n] as much as possible
- (b) (Environment or assumption)
 - s[n] and v[n] must differ in characteristics.
 - Usually, they differ in spectrum, i.e., distribution of power (energy) in frequency.
 - (Example)
 - (i) Suppose v[n] has larger spectral values where s[n] has small spectral values

- (ii) Design a filter to block/reject/attenuate at frequencies where noise is much stronger than the desired signal
- Blocking filters

- (i) Lowpass filters: block all frequencies above some *cutoff* frequency. Example: knock out high frequency static/hiss/snow type of noise.
- (ii) Highpass filters: block all frequencies below some *cutoff* frequency. Example: knock out 60 Hz hum.
- (iii) Bandpass filters: block all frequencies outside of $[\hat{\omega}_1, \hat{\omega}_2]$. Example: radio receiver
- (c) Practical filters cannot do any of these exactly.

We will gradually develop methods for better and better filtering: Chaps 5, 6, 7, and 8.

Chap 5	Time-domain analysis	FIR filters
		Impulse responses
		Superposition of responses
Chap 6	Frequency-domain analysis	FIR filters
		sinusoid/exponential responses
		Superposition of responses
Chap 7	Z-transform	power technique needed
		for design of filters
Chap 8	IIR filters	time and frequency domain analysis
		design in z -domain

2.2 Spectral Shaping

Enhance/reduce spectral components digitally. Examples include equalizers (bass/treble control).

2.3 Signal Detection

Filter as a running correlator Correlation:

$$C[x,y] = \sum x[k]y^*[k].$$

- (a) Filters perform running/sliding/moving correlation.
- (b) This is useful for signal detection.
- (c) (Example) $y[n] = \frac{1}{4}x[n-2] + \frac{1}{4}x[n-1] + \frac{1}{2}x[n]$. y[n] is the running correlation of x[n] with

$$c[n] = (\dots, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0, \dots)$$

(d) Example What does the following do?

$$y[n] = \sum_{k=0}^{50} \sin(\hat{\omega}_0 k) x[n-k].$$

- (i) This does running correlation with $\sin(\hat{\omega}_0 k)$.
- (ii) It produces large output values when the input is similar to sinusoid with frequency $\hat{\omega}_0$
- (iii) It produces small output values when the input is similar to sinusoid with frequency far from $\hat{\omega}_0$
- (iv) So it picks up signals with frequency around $\hat{\omega}_0$
- (v) It is a bandpass filter or a detector of signal $\sin(\hat{\omega}_0 k)$.