1 Review of LTI Filters in the Time-Domain

Table 1: Summary of LTI filter description in the time-domain

<table>
<thead>
<tr>
<th>Input signal description</th>
<th>Filter description</th>
<th>Input/output relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x[n]$ as a discrete-time sequence</td>
<td>coefficients ${b_k}$ of a difference equation</td>
<td>$y[n] = \sum_{k=-M_1}^{M_2} b_k x[n-k]$</td>
</tr>
<tr>
<td>$x[n] = x[n] \ast \delta[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$</td>
<td>impulse response $h[n]$</td>
<td>$y[n] = x[n] \ast h[n]$</td>
</tr>
<tr>
<td></td>
<td>block diagram of delays, multipliers, adders</td>
<td></td>
</tr>
</tbody>
</table>

• The filter described by $y[n] = \sum_{k=-M_1}^{M_2} b_k x[n-k]$ is LTI and has the following impulse response $h[n]$

$$h[n] = \begin{cases} b_n, & -M_1 \leq n \leq M_2, \\ 0, & \text{else.} \end{cases}$$

• Any signal $x[n]$ can be represented as

$$x[n] = x[n] \ast \delta[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

• An LTI filter with the impulse response $h[n]$ has the response $y[n]$ to input $x[n]$,

$$y[n] = x[n] \ast h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k].$$

• Cascaded LTI filters act as one LTI filter with its overall impulse response

$$h[n] = h_1[n] \ast \cdots \ast h_K[n],$$

where $h_i[n]$ are the impulse responses of cascaded sub-filters.
2 Frequency Response of an LTI Filter

Read 6.1, 6.4, and 6.5

• A different approach to filters is possible.
 (a) Find the filter response to sinusoids/exponentials.
 (b) Express \(x[n] \) as a sum of sinusoids/exponentials.
 Tools available are DFT or other spectral decompositions.
 (c) Express \(y[n] \) as a sum of sinusoid/exponential responses.

• This is called the frequency domain approach, because we work with the frequency domain description of signals.

2.1 The Response of an LTI Filter to an Exponential Signal

• Suppose \(x[n] = Ae^{j(\hat{\omega}n + \phi)} = Ae^{j\phi}e^{j\hat{\omega}n} \) is applied to a filter with impulse response \(h[n] \)

Then the output \(y[n] \)

\[
y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]
\]

\[
= \sum_{k=-\infty}^{\infty} h[k]e^{j\phi}e^{j\hat{\omega}(n-k)}
\]

\[
= \sum_{k=-\infty}^{\infty} h[k]e^{-j\hat{\omega}k}e^{j\hat{\omega}n}
\]

\[
= \left(\sum_{k=-\infty}^{\infty} h[k]e^{-j\hat{\omega}k} \right) Ae^{j\phi}e^{j\hat{\omega}n}
\]

a constant determined by \(h \) and \(\hat{\omega} \)

\[
= H(\hat{\omega})x[n].
\]

• Conclusion:
 (a) (Form) The output is complex exponential
 When input \(x[n] \) is a complex exponential, the output \(y[n] \) is complex exponential with the same frequency.
 (b) Later, we will see that sinusoidal input \(\implies \) sinusoid output.
 (c) (Amplitude and phase) What about the amplitude and phase of \(y[n] \)?

\[
H(\hat{\omega}) \triangleq \sum_{k=-\infty}^{\infty} h[k]e^{-j\hat{\omega}k}.
\]

This function (of \(\hat{\omega} \)) is called the frequency response (function) of the (LTI) filter/system. Then we see that

\[
y[n] = H(\hat{\omega}) Ae^{j\phi}e^{j\hat{\omega}n}
\]

\[
= |H(\hat{\omega})|e^{j\angle H(\hat{\omega})} Ae^{j\phi}e^{j\hat{\omega}n}
\]

\[
= A|H(\hat{\omega})|e^{j(\phi+\angle H(\hat{\omega}))}e^{j\hat{\omega}n}
\]

2
(i) The magnitude is scaled by $|H(\hat{\omega})|$.
(ii) The phase is added by $\angle H(\hat{\omega})$.

- $|H(\hat{\omega})|$ is called the magnitude (or gain) of the frequency response.
- $\angle H(\hat{\omega})$ is called the phase (or angle) of the frequency response.
- Note that both are dependent on frequency $\hat{\omega}$.

2.2 Example

An LTI filter has the following impulse response:

$$h[n]$$

$$\begin{array}{c}
\text{2} \\
\text{1} \\
\text{n}
\end{array}$$

Find the magnitude and phase of the frequency response of the filter.

$$H(\hat{\omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\hat{\omega}k}$$

$$= 2 + e^{-j\hat{\omega}}$$

$$= 2 + \cos(\hat{\omega}) - j \sin(\hat{\omega}).$$

$$|H(\hat{\omega})| = \sqrt{(2 + \cos(\hat{\omega}))^2 + \sin^2(\hat{\omega})}$$

$$= \sqrt{4 + 4 \cos(\hat{\omega}) + \cos^2(\hat{\omega}) + \sin^2(\hat{\omega})}$$

$$= \sqrt{5 + 4 \cos(\hat{\omega})}.$$

$$\angle H(\hat{\omega}) = \tan^{-1}\left(\frac{-\sin(\hat{\omega})}{2 + \cos(\hat{\omega})}\right).$$

(a) It is a lowpass filter.

(b) Why?

Note that $\hat{\omega} = \pi$ is the highest frequency.

(c) The filter is not sharp. Note that the order of the filter is 1.