1 Review of LTI Filters in the Time-Domain

Table 1: Summary	of LTI filter	description in	the time-domain

Input signal description	Filter description	Input/output relationship
x[n] as a discrete-time sequence	coefficients $\{b_k\}$ of a difference equation	$y[n] = \sum_{k=-M_1}^{M_2} b_k x[n-k]$
$x[n] = x[n] * \delta[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$	impulse response $h[n]$	$y[n] = x[n] \ast h[n]$
	block diagram of delays, multipliers, adders	

• The filter described by $y[n] = \sum_{k=-M_1}^{M_2} b_k x[n-k]$ is LTI and has the following impulse response h[n]

$$h[n] = \begin{cases} b_n, & -M_1 \le n \le M_2, \\ 0, & \text{else.} \end{cases}$$

• Any signal x[n] can be represented as

$$x[n] = x[n] * \delta[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

• An LTI filter with the impulse response h[n] has the response y[n] to input x[n]

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

• Cascaded LTI filters act as one LTI filter with its overall impulse response

$$h[n] = h_1[n] * \cdots * h_K[n],$$

where $h_i[n]$ are the impulse responses of cascaded sub-filters.

2 Frequency Response of an LTI Filter

Read 6.1, 6.4, and 6.5

- A different approach to filters is possible.
 - (a) Find the filter response to sinusoids/exponentials.
 - (b) Express x[n] as a sum of sinusoids/exponentials. Tools available are DFT or other spectral decompositions.
 - (c) Express y[n] as a sum of sinusoid/exponential responses.
- This is called the **frequency domain approach**, because we work with the frequency domain description of signals.

2.1 The Response of an LTI Filter to an Exponential Signal

- Suppose $x[n] = Ae^{j(\hat{\omega}n+\phi)} = Ae^{j\phi}e^{j\hat{\omega}n}$ is applied to a filter with impulse response h[n]
- Then the output y[n]

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$
$$= \sum_{k=-\infty}^{\infty} h[k]Ae^{j\phi}e^{j\hat{\omega}(n-k)}$$
$$= \sum_{k=-\infty}^{\infty} h[k]Ae^{j\phi}e^{-j\hat{\omega}k}e^{j\hat{\omega}n}$$
$$= \underbrace{\left(\sum_{k=-\infty}^{\infty} h[k]e^{-j\hat{\omega}k}\right)}_{\text{a constant determined by } h \text{ and } \hat{\omega}}_{\text{a constant determined by } h \text{ and } \hat{\omega}}$$
$$= H(\hat{\omega})x[n].$$

- Conclusion:
 - (a) (Form) The output is complex exponential

When input x[n] is a *complex exponential*, the output y[n] is complex exponential with the same frequency.

(b) Later, we will see that

sinusoidal input \implies sinusoid output.

(c) (Amplitude and phase) What about the amplitude and phase of y[n]?

$$H(\hat{\omega}) \stackrel{\Delta}{=} \sum_{k=-\infty}^{\infty} h[k] e^{-j\hat{\omega}k}$$

This function (of $\hat{\omega}$) is called the **frequency response (function)** of the (LTI) filter/system. Then we see that

$$y[n] = H(\hat{\omega}) \underbrace{Ae^{j\phi}e^{j\hat{\omega}n}}_{x[n]}$$
$$= |H(\hat{\omega})|e^{j\angle H(\hat{\omega})}Ae^{j\phi}e^{j\hat{\omega}n}$$
$$= A|H(\hat{\omega})|e^{j(\phi+\angle H(\hat{\omega}))}e^{j\hat{\omega}n}$$

- (i) The magnitude is scaled by $|H(\hat{\omega})|$.
- (ii) The phase is added by $\angle H(\hat{\omega})$.
- $|H(\hat{\omega})|$ is called the *magnitude (or gain)* of the frequency response.
- $\angle H(\hat{\omega})$ is called the *phase (or angle)* of the frequency response.
- Note that both are dependent on frequency $\hat{\omega}$.

2.2 Example

An LTI filter has the following impulse response:

Find the magnitude and phase of the frequency response of the filter.

$$\begin{split} H(\hat{\omega}) &= \sum_{k=-\infty}^{\infty} h[k] e^{-j\hat{\omega}k} \\ &= 2 + e^{-j\hat{\omega}} \\ &= 2 + \cos(\hat{\omega}) - j\sin(\hat{\omega}). \\ \left| H(\hat{\omega}) \right| &= \sqrt{\left(2 + \cos(\hat{\omega})\right)^2 + \sin^2(\hat{\omega})} \\ &= \sqrt{4 + 4\cos(\hat{\omega}) + \cos^2(\hat{\omega}) + \sin^2(\hat{\omega})} \\ &= \sqrt{5 + 4\cos(\hat{\omega})}. \\ \angle H(\hat{\omega}) &= \tan^{-1} \left(\frac{-\sin(\hat{\omega})}{2 + \cos(\hat{\omega})}\right). \end{split}$$

(a) It is a lowpass filter.

(b) Why?

Note that $\hat{\omega} = \pi$ is the highest frequency.

(c) The filter is not sharp. Note that the order of the filter is 1.

