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Appendix A:  Complex-Valued Signals

Complex-valued signals will be introduced in Chapter 2 as a way to simplify certain
calculations involving sinusoidal signals.  This appendix briefly summarizes the
properties, statistics of complex signals and elementary operations on them.

Definition:  A complex-valued signal is simply a signal whose values at each time are
complex.  As such, it has a real part and an imaginary part, a magnitude and a phase.
For example, if

z(t)  =  x(t) + j y(t)  =  r(t) e
jφ(t)
  ,

then  x(t)  is the real part,  y(t)  is the imaginary part,  r(t)  is the amplitude and  φ(t)
is the angle or phase.

Signal Characteristics and Statistics:

The following table shows the definitions of the signal characteristics mentioned
previously for real-valued signals, with the exception of signal value distribution, which
is not easily summarized in table form.

Continuous-time signal  z(t) Discrete-time signal z[n]

z(t) = x(t) + j y(t) z[n] = x[n] + j y]n]

support interval [t1,t2] {n1,n1+1,...,n2}

duration t2-t1 n2-n1+1

mean value: M(z)  =  
1

t2-t1 ∫
t1

t2
 z(t) dt M(z)  =  

1
n2-n1+1 ∑

n=n1

n2
 z[n]

         = M(x) + j M(y)        = M(x) + j M(y)

magnitude: |z(t)| = √x2(t)+y2(t) |z[n]| = √x2[n]+y2[n]

squared value,aka
instantaneous power: |z(t)|2 = x2(t)+y2(t) |z[n]|2 = x2[n]+y2[n])

mean-squared value,
aka average power:    MS(z) = 

1
t2-t1 ∫

t1

t2
 |z(t)|2 dt MS(z) =  

1
n2-n1+1 ∑

n=n1

n2
 |z[n]|2

    = MS(x) + MS(y)       =  MS(x) + MS(y)

RMS value: RMS(z)  =  √MS(z) RMS(z)  =  √MS(z)

energy: E(z)  =  ∫
t1

t2
 |z(t)|2 dt E(x)  = ∑

n=n1

n2
 |z[n]|2

    =  E(x) + E(y)            =  E(x) + E(y)

Periodicity of continuous-time signals:

A complex continuous-time signal  z(t)  is said to be periodic with period  T  if  z(t+T)
= z(t)  for all values of  t.  This is equivalent to saying that both  x(t)  and  y(t)  are
periodic with period  T.

1.  A continuous-time signal  z(t)  with period  T  is also periodic with period  nT
for any positive integer  n.

2.  The fundamental period To  is the smallest period.  The reciprocal of  To  is
called the fundamental frequency  fo  of the signal.  That is, fo = 1/To.

3.   z(t)  is periodic with period  T  if and only if  T  is an integer multiple of  To.
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4.  If signals  z(t)  and  z'(t)  are both periodic with period  T,  then the sum of these
two signals,  w(t) = z(t) + z'(t)  is also periodic with period  T.  This same
property holds when three or more signals are summed.

5.  The sum of two signals with fundamental period  To  is periodic with period  To,
but its fundamental period might be less than  To.

6.  The sum of two signals with differing fundamental periods, T1 and T2, will be
periodic when and only when the ratio of their fundamental periods equals the
ratio of two integers.  The fundamental period of the sum is the least common
multiple of  T1  and  T2.  The fundamental frequency of the sum is the greatest
common divisor of the fundamemental frequencies of the two sinusoids.

Periodicity of discrete-time signals:

A complex discrete-time signal  z[n]  is said to be periodic with period N  if  z[n+N] =
z[n]  for all integers  n.  This is equivalent to saying that both  x[n]  and  y[n]  are
periodic with period  N.

1.  A discrete-time signal with period  N  is also periodic with period  mN  for any
positive integer  m.

2.  The fundamental period, denoted  No,  is the smallest period.  The reciprocal of
No  is called the fundamental frequency  fo  of the signal.  That is,  fo = 1/No.

3.   z[n]  is periodic with period  N  if and only if  N  is an integer multiple of  No.

4.  If signals  z[n]  and  z'[n]  are both periodic with period  N,  then the sum of
these two signals,  w[n] = z[n] + z'[n]  is also periodic with period  N.  This same
property holds when three or more signals are summed.

5.  The sum of two signals with fundamental period  No  is periodic with period  No,
but its fundamental period might be less than  No.

6. The sum of two signals with differing fundamental periods,  N1  and  N2,  is
periodic with fundamental period equal to the least common multiple of  N1  and
N2  and fundamental frequency equal to the greatest common divisor of their
fundamental frequencies  f1  and  f2.  Note that unlike continuous-time case, the
ratio of the fundamental periods of discrete-time periodic signals is always the
ratio of two integers.  Therefore, the sum is always periodic.

Elementary Operations on One Signal

These are illustrated for continuous-time signals, but apply equally to discrete-time
signals.

Adding a constant:  z'(t) = z(t) + c ,  where  c  is a real or complex number.

Amplitude scaling:  z'(t) = c z(t) ,   where  c  is a real or complex number.

This has the effect of scaling both the average and the mean-squared values.
Specifically,  M(z') = c M(z)  and  MS(z') = |c|2 MS(z).

Time shifting:  If  z(t)  is a signal and  T  is some number,  then the signal

z'(t) = z(t-T) = x(t-T) + j y(t-T)

 is a time-shifted version of  x(t).

Time reflection/reversal:  The time reflected or time reversed version of a signal
z(t)  is

z'(t) = z(-t).
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Time scaling:  The operation of time-scaling a signal  x(t)  produces a signal

z'(t) = z(ct)

where  c  is some positive real-valued constant.

Combinations of the above operations:  In the future we will frequently
encounter signals obtained by combining several of the operations introduced above,
for example,

z'(t) = 3 z(-2(t-1)) .

Elementary Operations on Two or More Signals

These are illustrated for continuous-time signals, but apply equally to discrete-time
signals.

Summing:  w(t)  =  z(t) + z'(t) .

Linear combining:  w(t) = c1 z1(t) + c2 z2(t) + c3 z3(t) ,  where  c1,c2,c3  are real or
complex numbers.

Multiplying:  w(t)  =  z(t) z(t) .

Concatenating:  Concatenation is the process of appending one signal to the end of
another.

Correlation

The correlation between continuous-time complex signals  z(t)  and  z'(t)  is

C(z,z')  =  ∫
t1

t2
 z(t) z'*(t) dt ,

where  (t1,t2)  is the time interval of interest.  Similarly, the correlation between
discrete-time complex signals  z[n]  and  z'[n]  is defined to be

C(z,z')  =  ∑
n1

n2
 z[n] z'*[n] .

Why the complex conjugate?  The reason is that this enables the relation  E(z) = C(z,z)
continue to be valid.  Specifically,

C(z,z)  =   ∫
t1

t2
 z(t) z*(t) dt  = E(z) .

Unfortunately, correlation for complex-valued signals is not symmetric, i.e.  C(z,z') ≠
C(z',z).  However,

C(z',z)  =  C*(z,z') .

This is because

C(z',z)  =  ∫
t1

t2
 z'(t) z*(t) dt  =   

 



 



∫
t1

t2
 z(t) z'*(t) dt

*
  =  C*(z,z') .

The normalized correlation between signals  z  and  z'  is

CN(z,z')   =   
C(z,z')

√E(z)√E(z')
  .

The Schwarz Inequality continues to hold for complex signals.  That is,
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|CN(z,z')| ≤ 1,

with equality if and only if one signal is an amplitude scaling of the complex conjugate
of the other; i.e.  y(t) = c x(t)  for some real or complex constant  c.
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Appendix B:  Trigonometric Identities and Facts About Complex Exponen-
tials

Trigonometric Identities

We will not use these much, but nevertheless it is nice to have a table.  The first five
comprise Table 2.2 on p. 14 of DSP First.

1. sin2 θ + cos2 θ   = 1

2. cos 2θ  =  cos2 θ - sin2 θ

3. sin 2θ  =  2 sin θ cos θ

4. sin(α±β)  =  sin α cos β ± cos α sin β

5. cos(α±β)  =  cos α cos β -+ sin α sin β

6. sin α  sin β  =  
1
2  cos(α-β) - 

1
2 cos(α+β)

7. cos α cos β  =  
1
2  cos(α-β) + 

1
2 cos(α+β)

8. sin α cos β  =  
1
2  sin(α+β) + 

1
2 sin(α-β)

9. cos α sin β  =  
1
2  sin(α+β) - 

1
2 sin(α-β)

10.  sin α  + sin β  =  2 sin 
1
2(α+β) cos 

1
2(α-β)

11.  sin α  - sin β  =  2 cos 
1
2(α+β) sin 

1
2(α-β)

12.  cos α + cos β  =  2 cos 
1
2(α+β) cos 

1
2(α-β)

13.  cos α - cos β  =  -2 sin 
1
2(α+β) sin 

1
2(α-β)

14.  sin2 θ  =  
1
2(1-cos 2θ)

15.  cos2 θ  =  
1
2(1+cos 2θ)

16.  sin θ  =  cos(θ-
π
2)

17. cos θ  = sin(θ+
π
2)
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Useful Facts About Complex Exponentials

1. e
jθ
 

 = cos θ + j sin θ (Euler's formula)

2. cos θ = 
1
2  


 


e
jθ
 

+e
-jθ
  (Inverse Euler formula)

3. sin θ = 
1
2j  


 


e
jθ
 

-e
-jθ
  (Another Inverse Euler formula)

4. 1  =  e
j2π
    =  e

j2πn
      for any integer  n

5. -1  =  e
jπ
    =  e

-jπ
 

6. (-1)
n
   =  e

jπn
 

7. j  =  e
jπ/2
  

8. -j  =  
1
j   =  e

-jπ/2
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Appendix C:  Problem Solving TIps

Simple Proof Techniques

Starting with the definition

write down what you are trying to do

write the formula you are going to use before you use it

write down partial

write neatly.  you can't check what you can't read

work from both ends

write more, it saves time,  you can check your reasoning/answer

give examples


