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I . Elementary Signal Concepts

Reading Assignment:  Chapter 1 and these notes.  It is recommended that you review
these notes every now and then throughout the term.  Some of these elementary
concepts will only be needed later in the course, and some will only be well understood
after you have had more experience with signals.

A.  Signal Definition and Signal Descriptions

Definition:  A "signal" or "waveform" is a time-varying numerical quantity.  More
precisely, a signal is a function of time.  That is for each value of time  t  there is
number called the1 signal value at time t.

Notation:  We typically use lower case letters like  x, y, s  or subscripted letters like
x1  to represent signals, i.e. functions of time.

Most frequently, we show time   t  as the argument of such function, as  in  x(t).

Beware of the Ever-Present Notational Ambiguity:  When you see  "x(t)"
written,  sometimes the writer intends you to think of the value of the signal at the
specific time  t,  as in  x(3.1),  and sometimes  x(t)  means the whole signal -- that is,
the writer intends you to think about the whole signal, i.e. the signal values at all times.
When it is essential that reader think about the whole signal, writers will sometimes
write  x  or  {x(t)}  instead of  x(t).

Continuous-Time and Discrete-Time Signals:  If the time variable ranges over a
continuum of values, we say that the signal is continuous-time.  If the time variable
ranges over a discrete set of values we say the signal is discrete-time.

More specifically, we assume unless stated otherwise that every continuous-time signal
x(t)  has time  t  ranging over all real numbers from -∞ to +∞.  In mathematical terms
we say that the domain of the function  x  is the interval  (-∞,∞).

Similarly, unless stated otherwise, every discrete-time signal is assumed to have time  t
ranging over the set of all integers:  {..., -2, -1, 0, 1, 2, ... }.  That is, the domain of the
function  x  is the set of all integers.  When dealing with discrete-time signals it is most
common to use one of the symbols  i, j, k, l, m, or n  to denote time rather than  t.  It is
also common to put the time variable within square brackets '[ ]',  rather than ordinary
parentheses.  For instance, the following are examples of the notation used for discrete-
time signals   x[n], y[k], z1[i].

Signal Descriptions:  Sometimes signals are described with formulas and sometimes
they cannot be so described.

Examples of continuous-time signals described with formulas:

x(t) = t
2
 ,         y(t) = 3 sin (47 t),         z(t) =  

 

 2, t<0

t2, 0≤t≤1

3sin(4t), t>1

Example of a continuous-time signal that is not describable with a formula:

0 200 400 600 800 1000 1200 1400 1600
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1Italics is used when a technical term is used or introduced for the first time.
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Food for thought:  The signal shown above is a recording of someone speaking a couple
of words.  Everything that one would hear is embodied in the function plotted above.

Examples of discrete-time signals described with formulas:

x[n] = n2,         y[n] = 3 sin (47 n),         z[n] =  
 

 2, n<0

n2, 0≤n≤10

3sin(4n), n>10

Example of a discrete-time signal that is not describable with a formula:

0 10 20 30 40 50 60 70 80
-0.2

-0.1

0

0.1

0.2

0.3

Are signals described by formulas more "real" or "authentic" than signals that are not
so describable?  What does it mean to "describe a signal with a formula"?  Over the
centuries, it has been found useful to give names to certain basic mathematical
operations,  such as '+', '-', '×' '/',  x2, ln(x), ex,  |x|  etc. and certain basic functions,
such as  sin(x),  cos(x), Γ(x),  etc.  To "describe a signal with a formula" is simply to
say that it can be expressed in terms of previously defined operations and formulas.  A
signal that is not describable by a formula may simply be a function waiting to be
blessed with its own name.  Or it may be a function that has not previously occurred
and may never occur again.  Generally, we do not consider signals described by
formulas to be any more real or authentic than those that are not so describable.

Note that a formula describing a signal can be quite complex, as in

s(t) = ∑
i=1

N
 ai cos(bit + φi)

where  N,  a1,...,aN,  b1,...,bN,  φ1,..., φN  are "signal parameters",  i.e. constants or
variables that one needs to know in order to fully determine the signal.  It will be
important that to develop the skill of being able to work with complex signal formulas.
For example, when you see the summation sign Σ,  you should recognize that it is just
an abbreviation for a sum of  N  terms.  Indeed, to help you to better understand the
signal described by a summation, it is often useful to write it in its unabbreviated form,
e.g.

s(t)  =  a1 cos(b1t+φ1) +  a2 cos(b2t+φ2) + ... +  aN cos(bNt+φN)

Discrete-Time Signals from Continuous-Time Signals via Sampling:
Frequently discrete-time signals are produced by sampling a continuous-time signal.
That is, if  x(t)  is a continuous-time signal and  Ts  is a positive number then the
discrete-time signal produced by sampling  x(t)  with sampling interval  Ts  is the signal
x[n]  defined by

x[n]  =  x(nTs) .

For example, if  Ts = 1.5,  then  x[0] = x(0),  x[1] = x(1.5),  x[2] = x(3),  x[3] = x(4.5),
etc.  The quantity  fs = 1/Ts  is called the sampling frequency or sampling rate, because
it represents the frequency or rate (in samples per second) at which samples are taken.
For example a continuous-time signal  x(t)  and a discrete-time signal  x[n]  produced
by sampling  x(t)  are shown below.
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x(t)

x[n]

Indeed, as will be discussed a great deal later in the course, we often work with contin-
uous-time signals by working with their samples, i.e. with a discrete-time signal
produced by sampling.  For example, we often display continuous-time signals by
displaying their samples.

On the other hand, there are also discrete-time signals that are not obtained by sampling
a continuous-time signal.  For example, consider the signal  x[n],  where  x[n]  denotes
the height of the nth person standing in a certain line.

B.  Elementary Signal Characteristics2

We will primarily present the characteristics of continuous-time signals.  There is a
discrete-time version of each of these, which will be presented later.

1.  Signal Support Characteristics

These are signal characteristics related to the time axis.

Support Interval:  Roughly speaking the support interval of a signal  x(t)  is the set
of times such that the signal is not zero.   More precisely the support interval of a signal
x(t)  is the smallest interval3 of times  [t1,t2]  such that the signal is zero outside this
interval.  We often abbreviate and say simply support or interval instead of support
interval.  Several examples are shown below.

t

support
interval

1
t

       

t

support
interval

t 1

t2

t

infinite 
support
interval

t  =01 t   =∞2

   

n n
n

1 2support
interval

Duration:  The duration or length  if a signal  x(t)  is the length of it support interval.
Some signals have finite duration and others have infinite duration.  For example, the
first two signals above have finite duration, and the third signal has infinite duration.

Outside of EECS 206, one will occasionally encounter situations where signals are
considered to be undefined at times outside their support interval.  However, within
EECS 206, unless explicitly stated otherwise, we assume the signal value to be  0
outside the support interval.  Indeed, we will often define a signal simply by describing
its values in some interval, with the presumption that the signal is zero for all times
outside this interval.  For example, if we introduce a signal as

x(t) = t2,  1 ≤ t ≤ 2 ,

2You do not need to memorize all of these.  Rather you need to be aware of the existence of these characteristics, so you can
look up and apply the appropriate ones at the appropriate times.
3Intervals can be open as in (a,b), closed as in [a,b], or half-open, half-closed as in (a,b] and [a,b].  For continuous-time
signals, in almost all cases of practical interest, it is not necessary to distinguish the support interval as being of one type or
the other.
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then it should be understood that  x(t) = 0  for  t < 0  and  t > 2.

Pulses:  Signals with short duration are often called pulses.  Note that "short" is a
subjective or relative designation.

Negative times and time zero:  In some of the examples above the signal interval
included negative times.  What is the significance of negative time?  To answer this, one
must first answer the question:  What is time zero?  Basically, time zero is just some
convenient reference time.  Accordingly, a negative time simply represents a time prior
to the reference time.  For example, a radar system sends a pulse and waits to record
the return times of reflections of this pulse from distant objects.  It is usually
convenient to let "time zero" be the time at which the original pulse was transmitted.
Then  t = -1.8,  means  1.8  units of time before the reference time.

2 . Signal Value Characteristics, a.k.a. Signal Statistics

We now consider the values a signal  x(t)  takes.

Maximum and minimum values:  If  x(t)  denotes some generic signal, then it has a
maximum value  xmax  and a minimum value  xmin.  If these are both finite, i.e. xmax <
∞  and  xmin > -∞,  then the signal is said to be bounded.

What do negative vs. positive signal values represent?  The answer depends on the
application.  As an example, when a microphone responds to a sound, there is usually a
diaphragm that moves back and forth, tracking the fluctuations in air pressure that
constitute the sound.  When the diaphragm is pushed one way, the microphone produces
a positive voltage; when pulled the other way, it produces a negative voltage.

Average or mean value:  A signal also has an average value, also called a mean
value.  Specifically, the average or mean value of  x(t)  over the interval from  t1  to  t2
is

M(x)  =  
1

t2-t1 ∫
t1

t2
 x(t) dt .

Typically a microphone recording has average equal to zero, or very nearly so.  In
electrical systems,  M(x)  is often called the DC value,  where DC stands for direct
current.  If the interval over which the average is sought is infinite, then the average
needs to be defined as a limit.  For example, the average of the interval  [0,∞)  is

M(x)  =   
 

lim
T→∞

  
1
T ∫

0

T

 x(t) dt ,

and the average over the interval  (-∞,∞)  is

M(x)  =   
 

lim
T→∞

  
1

2T ∫
-T

T

 x(t) dt .

When a signal average is indicated but an interval is not specified, we mean the average
over the entire support of the signal.

Absolute value:  Quite often, when a signal has values that are both positive and
negative, we are interested in a measure of the signal strength apart from its positive or
negative sign.  With signal strength in mind, one can compute its magnitude or
absolute value, denoted  |x(t)|.

Squared value, a.k.a. instantaneous power:  In most physical situations, the
square of  x(t),  i.e.  x2(t),  is a more useful measure of signal strength a time  t  than
magnitude, because it is proportional to the instantaneous power in the signal  x(t)  at
time t, and because power is a quantity of fundamental importance.  For such reasons,
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we often refer to  x2(t)  as the instantaneous power of  x(t)  at time  t.   However, one
must remember that the actual power is a constant times this, where the constant
depends on the specific physical situation.  For example, if  x(t)  represents the current
in amperes flowing at time  t  through a resistor with resistance  R ohms, then the
instantaneous power absorbed by the resistor is  R x2(t)  watts.

Mean-squared value, a.k.a. average power:  Whereas  x2(t)  is an excellent
measure of signal strength at an individual time  t,  quite frequently we need an
aggregate measure of signal strength that applies to the whole signal, or to the signal
over some specified time interval.  In such cases, we will typically use the mean-
squared value (MSV).  Specifically, the MSV of a signal  x(t)  over the interval  t1 to t2
is

MS(x)  =  
1

t2-t1 ∫
t1

t2
 x2(t) dt .

This is also called the average power in  x(t)  over the interval  t1 to t2.  As with the
definition of average value of  x, this definition needs to incorporate a limit when the
interval is infinite.  And when no interval is specified, the entire support interval is
intended.

As an example, mean-squared value is useful when measuring the strength of the signal
received by a radar antenna.  If it is large in an interval equal to the length of a radar
pulse, then we assume that a reflected pulse has been received during this interval, and
determine that this pulse is due to an object whose distance is the elapsed time since the
original pulse was transmitted times the speed of light.   If it is very small, then we can
assume that no reflected pulse has been received during this interval, i.e. there is no
object at the corresponding distance.

As another example, mean-squared value is used by electric utility companies to
determine how much to charge you for the electricity they have supplied.  This is
because the amount of fuel required by them to supply your electricity is proportional
to the mean-squared value of the current supplied to your home.

As a last example, we mention that mean-squared value is often used as a signal quality
measure.  For example, suppose  x(t)  is the signal coming from the leftmost of two
microphones that are recording an orchestral concert, and suppose  y(t)  is the signal
fed to the left speaker of your stereo receiver after transmission by an FM radio
station.  Let  e(t) = x(t) - y(t)  denote the difference between the two signals, which we
consider to be an error signal.  Then the MSV of  e(t)  is a good measure of the quality
of the system that records and transmits  x(t)  to you.  It is usually called mean-squared
error.

RMS Value:  A closely related quantity is the root mean-squared value (RMSV),
which is simply

RMS(x)  =  √MS(x)  =  √1
t2-t1 ∫

t1

t2
 x2(t) dt .

On the one hand, RMSV is nicer than MSV in that its value is easier to interpret because
it is like a typical signal value, whereas the value of the MSV is harder to interpret
because it is like the square of a typical signal value.  On the other hand, it is usually
easier to work with MSV, because it avoids the square root.

Signal Energy:  Another closely related quantity is the energy of the signal  x(t)  in
the interval  t1 to t2,  which is

E(x)  =  ∫
t1

t2
 x2(t) dt .

By comparing this, with previous definitions, we see that energy is the integral of
instantaneous power.  It is also the average power multiplied by the length of the
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interval.  Alternatively, average power is energy divided by the length of the interval
over which it is computed.  A little thought will convince you that it is energy for
which an electric utility company actually charges.

Since signal energy and average power (MSV) are related by a constant, the choice of
which to focus on is often a matter of taste.  If you focus on one, you can easily
compute the other.

However, for signals infinite duration often have infinite energy (over their entire
support).  For such signals, power is usually a more interesting quantity than energy.

Variance and Standard Deviation4:  The mean-squared value of  x(t)  minus its
average value is called the variance of  x.  The square root of the variance is called the
standard deviation.  That is, the variance5 of  x  over the interval  t1 to t2  is

σ2(x)  =  MS(x-M(x))  =   
1

t2-t1 ∫
t1

t2
 (x(t)-M(x))2 dt

and the standard deviation is

σ(x)  =  RMS(x-M(x))  =   √1
t2-t1 ∫

t1

t2
 (x(t)-M(x))2

 dt

The variance and standard deviations are useful measures of how "variable" is the
signal.  A signal with small variance or standard deviation stays close to its average
value most of the time, whereas a signal with large variance or standard deviation does
not.  As with  MSV vs. RMSV,  standard deviation values are usually easier to interpret
because their values are commensurate with signal values.  On the other hand, variances
are usually easier to compute and work with.

Relationship Between Mean-Squared Value, Variance and Average Value:
The following is a useful relationship.

MS(x)  =  σ2(x) + M2(x) (x)

Derivation:

σ2(x)  =   
1

t2-t1 ∫
t1

t2
 (x(t)-M(x))2 dt

  =   
1

t2-t1 ∫
t1

t2
 (x2(t)-2M(x)x(t)+M2(x)) dt

 =   
1

t2-t1 ∫
t1

t2
 x2(t) dt - 

1
t2-t1 ∫

t1

t2
 2 M(x) x(t) dt +  

1
t2-t1 ∫

t1

t2
 M2(x) dt

 =  MS(x) - 2 M(x) 
1

t2-t1 ∫
t1

t2
 x(t) dt + M2(x) 

1
t2-t1 ∫

t1

t2
 dt ,

since M(x) is constant we,bring it outside integrals

 =  MS(x) - 2 M(x) M(x) + M2(x)
by definition of  M(x)  and by doing the integral
on the right-hand side

 =  MS(x) - M2(x) ,   which is the desired relationship.

Signal Value Distribution and Histograms:  The minimum, maximum, average,
and mean-squared value are numbers that each tell us something about the values that

4Variance and standard deviation will not be needed early in the course.  You can skim them now, and return to them when
needed.
5The use of the term  σ2  for variance and  σ  for standard deviation is traditional.
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appear in the signal.  The signal value distribution gives a more complete picture.
Before introducing it, let us review the general meaning of the word distribution.  As
one example, consider the collection of grades resulting from an exam.  If we speak of
the "distribution of these grades", we mean a plot like that shown below.  The horizon-
tal axis shows the possible grades, and the height of the plot above a given grade is
proportional to the number of exam papers with that grade.  As another example,
consider the distribution of incomes of residents of Michigan.  Again this is a plot like
the one shown below.  In this case, the horizontal axis shows the possible incomes, and
the height of the plot above a given income is proportional to the number of people
with that income.

55 60 65 70 75 80 85 90 95
0

100

200

300

400

One may similarly consider the distribution of many, many quantities.  Not surprising-
ly, in signals and systems, we are often interested in the distribution of values of a
signal  x(t), which we call its signal value distribution.  That is, for a given signal  x(t)
we want a plot whose horizontal axis shows the signal values and whose height above a
given signal value is proportional to the frequency with which that value6 occurs in the
signal.

How do we plot the signal value distribution of a signal  x(t)?  The most common way
is make and plot a histogram.  Specifically, we divide the range of signal values from
xmin  to  xmax  into  M  equal width bins,  as illustrated below, where  M  is some
integer, usually in the range  10  to 1000.

xmin

x
x ax

w = (x     - x      )/10minmax

M=10 bins

If the signal is discrete-time, we count the number of signal values that lies within each
bin.  We then plot each count above the bin, as illustrated below.  If the signal is
continuous-time, then we repeat the same procedure on samples of the image.  That is,
we repeat the procedure on the set of values  x(T), x(2T), x(3T), ...  where  T  is the
sample spacing.  As examples, several signals and their signal value distributions are
shown below.

signal      signal value distribution

-1

0

1

   0

2000

4000

6000

-0.5

0

0.5

    0

500

1000

6Strictly speaking it is not the frequency of individual values that matter.  Rather for any value  x,  we want the frequency
with which signal values lie in a small neighborhood of  x,  say from  x-∆  to  x+∆,  where  ∆  is a small constant.
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-1

0
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    0

2000

4000

6000

-1

0

1

    0

500

1000

0

0.5

1

   0

5

10

15

These histograms were computed with Matlab using the command  hist(X,M),  where
X  is a vector containing signal samples, and  M  is the desired number of bins.

We now justify the statement made earlier that the signal value distribution gives a
more complete picture of the signal values than its minimum, maximum, average and
mean-squared values.  We do this by showing that these latter quantities can be
determined, at least approximately, from a histogram.  First, the minimum and
maximum values will be readily apparent from the histogram.  For example, the
maximum value is approximately equal to the largest bin center for which the
histogram is not zero.

Next, let us show how the average value  M(x)  can be computed from the histogram.
Let  x[1], x[2], ... , x[N]  denote the signal samples.  If the histogram has  B  bins, then
the width of each bin will be  W = (xmax-xmin)/B.  The first bin is the interval
(xmin,xmin+W),  the second bin is the interval  (xmin+W,xmin+2W),  and so on.  Let  Ci
denote the center of the  ith  bin.  That is,  Ci = xmin + iW - W/2,  for  i =1,...,M.  Let
Ni  denote the number of signal values that lie in the ith bin.  Then the histogram is
simply a plot of the points  (Ci,Ni),  i = 1,...,B.  The average value of the  N  signal
samples is

M(x)  =  
1
N ∑

n=1

N
 x[n]

Now we observe that we can approximately compute the sum in the above in a different
matter.  Since there are  Ni  signal values in the ith bin, we know that there are  Ni
signal values that approximately equal  Ci.  The sum of these values is approximately
NiCi.  Making this approximation for each of the bins leads to

∑
n=1

N
 x[n]  ≅   N1C1 + N2C2 + … + NB CB .

Therefore,

M(x)  ≅   
1
N ∑

i=1

B
 Ni Ci  =  ∑

i=1

B
 
N i
N  Ci

That is, the average signal value  M(x)  is approximately the weighted average of the
Ci's  (the bin centers), where the weight multiplying  Ci  is the fraction of samples that
lie in the ith bin.

In an entirely similar fashion one may show that
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MS(x)  ≅   ∑
i=1

B
 
N i
N  (Ci)2 .

Then from the mean and the mean-squared value, one may directly compute the RMS
value, the variance and the standard deviation.

The mean value, mean-squared value, RMS value, variance and standard deviation for a
continuous-time signal are each approximately equal to the corresponding quantity for
the discrete-time signal produced by sampling the continuous-time signal.  Thus, they
too may be estimated from a histogram.

In summary, for both discrete-time and continuous-time signals, all of the basic signal
value characteristics can be determined, at least approximately, from the signal value
distribution.
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Summary of Signal Value Characteristics

The following table shows the definitions of the signal characteristics mentioned
previously, with the exception of signal value distribution, which is not easily
summarized in table form.  It also lists the analogous characteristics for discrete-time
signals.

Continuous-time signal x(t) Discrete-time signal x[n]

support interval [t1,t2] {n1,n1+1,...,n2}

duration t2-t1 n2-n1+1

maximum value: xmax = 
 

max
t

 x(t) xmin = 
 

max
n

 x[n]

minimum value: xmin = 
 

min
t

 x(t) xmin = 
 

min
n

 x[n]

mean value: M(x)  =  
1

t2-t1 ∫
t1

t2
 x(t) dt M(x)  =  

1
n2-n1+1 ∑

n=n1

n2
 x[n]

magnitude: |x(t)| |x[n]|

squared value,a.k.a.
instantaneous power: x2(t) x2[n]

mean-squared value,
a.k.a. average power: MS(x) = 

1
t2-t1 ∫

t1

t2
 x2(t) dt MS(x) =  

1
n2-n1+1 ∑

n=n1

n2
 x2[n]

RMS value: RMS(x)  =  √MS(x) RMS(x)  =  √MS(x)

energy: E(x)  =  ∫
t1

t2
 x2(t) dt E(x)  = ∑

n=n1

n2
 x2[n]

variance: σ2(x)  =  MS(x-M(x)) σ2(x)  =  MS(x-M(x))

standard deviation: σ(x)  =  √MS(x-M(x)) σ(x)  =  √MS(x-M(x))

relationship: MS(x)  =  σ2(x) + M2(x) MS(x)  =  σ2(x) + M2(x)
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3 . Signal Shape Characteristics

In this section we consider signal characteristics related to what we loosely call signal
"shape".  Note that the signal value characteristics considered previously have nothing
to do with signal shape, as one can see by noticing that very different signals can have
the same signal value distribution, and consequently, the same min, max, average and
mean-squared values.  One may also observer that interchanging or time-reversing seg-
ments of a signal has no effect on signal value characteristics, but definitely affects
signal shape.  For example, the following two signals have the same signal value
distribution.

We will first focus on continuous-time signals and later comment briefly on the
analogous characteristics for discrete-time signals.

Local shape characteristics:  When examining a signal  x(t),  we often look at
segments of it to see if it is increasing, decreasing or fluctuating, as illustrated in the
example below.

ncreasing decreasing fluctuating

t

Common signal shapes:  The following is a listing of some common signal shapes.
These can occur by themselves, or as segments of signals.  That is, they may be thought
of as local characteristics.  The symbols  b, c, d, to and t1  represent parameters that
need to be specified in order that the signals be completely determined.

constant:   x(t) = c   

t

c

step7: x(t) =  

 c, t≥to
0, t<to

    

t

c

ot

rectangular pulse8:     x(t)  =  
 

 0, t<to
c, to≤t≤t1
0, t>t1

t
c

ot 1t

7Note that since the value of  x  at time  to  is  c,  strictly speaking, we should simply plot the value  c  at time  to.
Instead, we have drawn a vertical line, from  0  up to  c.  This emphasizes the change in  x  as it goes from  x(t) = 0  for
t<to  to  x(t) = c  for  t>to.  This convention of drawing vertical lines where a function has a step change in value is quite
common.  We should also note that in the real world, there is no signal cam make a perfect instantaneous step from one
value to another, as the formula for the step signal indicates.  Instead, the signal value will rise rapidly from  0  to  c  in the
vicinity of  to.  Thus a plot of a real world step signal will have a nearly vertical line rising from  0  to  c  at  to.  We may
think of the vertical line shown in the figure above as a reminder that, in the real world, the signal can change rapidly, but
cannnot actually have an ideal step change.
8Again notice the vertical lines, which are drawn for emphasis, and as a reminder of what happens in the real world.
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ramp: x(t) =  

 0, t<to
c(t-to), t≥to

,  increasing if c>0,  decreasing if c<0

t
ot

b>0

exponential:  x(t)  =  
 

 0, t<to

ceb(t-to), t≥to
,

increasing if b>0, decreasing if b<0,
constant if b=0

t
ot

c b<0

sinusoidal: x(t)  =  c sin (bt+d) ,  fluctuating if  b≠0

t
c

Periodicity:  A continuous-time signal  x(t)  is said to be periodic with period  T  if

x(t+T) = x(t)  for all values of  t .

It is conventional to require the period  T  to be a positive number.  For example the
plot below shows a periodic signal.  Its values are marked at a particular time  t  and
also at times  t+T,  t+2T, ... .

t t+T t+2T t+3T t+4T t+5T

Many signals that appear in nature are periodic, or at least nearly so.  For example, the
following is a segment from a recording of someone speaking the vowel "ee".

-0.5

0

0.5

Though many signals are aperiodic, i.e. not periodic, it turns out that periodic signals
can play a key role in their analysis.  Several important facts about periodic signals are
given next.

Fact 1.  A continuous-time signal  x(t)  with period  T  is also periodic with period
2T,  because for any time  t,

x(t+2T) = x((t+T)+T) = x(t+T) = x(t),  for all values of  t,

where the last two inequalities follow from the definition of "periodic with period T".
Indeed it is periodic with period  nT  for every positive integer  n.

Fact 2.  Though any periodic signal may be classified as having infinitely many
periods, there is always a unique smallest period, which is called the fundamental
period and which is often denoted  To.  That is, the fundamental period  To  of a signal
x(t)  is the smallest positive number  T  such that  x(t+T) = x(t)  for every value of  t.
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The reciprocal of  To  is called the fundamental frequency  fo  of the signal.  That is, fo
= 1/To.  It is the number of fundamental periods that occur per unit time.  Warning:
People often say "period" when they mean "fundamental period".  So whenever you
hear the word "period", you need to use the context to figure out if they really mean
"fundamental period".

Fact 3.  If  x(t)  has fundamental period  To,  then  x(t)  is periodic with period  nTo
for every positive integer  n.  Conversely, these are the only periods of  x(t).  That is,
if  x(t)  is periodic with period  T,  then  T = nTo  for some integer  n.

Derivation of the converse statement9:  Suppose  x(t)  is periodic with fundamental
period  To  and is also known to be periodic with period  T.  We must show that  T  is
an integer multiple of  To.  We use proof by contradiction.  Hypothetically suppose that
T  is not a multiple of  T.  Then  T = nTo + r  where  n  is the integer part of  T/To
and  r  is the remainder,  0 < r < To.  Since  x(t)  is periodic with period  To,  it must
be that for any time  t,

x(t+r)  =  x((t+r)+NTo) ,
since x(t) is periodic with period To,
we have x(t+NTo) = x(t),
which we apply with t replaced by t+r

  =  x(t+T) because  T = NTo+r

  =  x(t) because  x(t)  is periodic with period  T

Since  x(t+r) = x(t),  we deduce that  x(t)  is periodic with period  r.  But the fact that
r<To  contradicts the fact that  To  is, by definition, the smallest period of  x(t).  There-
fore, our hypothetical assumption must be false.  We conclude that  T  is a multiple of
To.

Fact 4.  A constant signal, e.g.  x(t) = 3,  is a special case.  It satisfies  x(t+T) = x(t)
for any choice of  T.  Thus it is periodic with period  T  for every value of  T > 0.
However, it is conventionally defined to have fundamental period  To = ∞  and
fundamental frequency  fo = 0.  This somewhat arbitrary definition turns out to be
more useful than other definitions.

Fact 5.  If signals  x(t)  and  y(t)  are both periodic with period  T,  then the sum of
these two signals,  z(t) = x(t) + y(t)  is also periodic with period  T.  This same
property holds when one sums three or more signals.  (The derivation of this will be
given in class or given as a homework problem.)

Fact 6.  The sum of two signals with fundamental period  To  is periodic with period
To,  but its fundamental period might be less than  To,  as the following example
illustrates.

4 8

t

x(t)
T  = 4o

4 8
t

y(t) T  = 4o

4 8
t

x(t)+y(t)
T  = 2o

2 6 10

9This derivation is included for completeness.  It is not expected that students can replicate this proof.
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Fact 7.  The sum of two signals with differing fundamental periods,  T1  and  T2,
might or might not be periodic.  They will be periodic when and only when the ratio of
their fundamental periods equals the ratio of two integers.  For example, if  T2/T1  is
5/3,  then the sum will be periodic.  However, if  T2/T1 = √ 2,  then the sum will not be
periodic.

To see that having an integer ratio makes a difference, consider two signals:  x(t)  with
fundamental period  T1,  and  y(t)  with fundamental period  T2.  Suppose that  T2/T1 =
m/n,  where  m  and  n  are integers.  Then  nT2 = mT1.  Letting  T = nT2 = mT1,  we
see that

x(t+T) + y(t+T)  =  x(t+mT1) + y(t+nT2)

       =  x(t) + y(t)

because  x  has period  T1  and  y  has period  T2.  This shows that  x(t)+y(t)  is
periodic with period  T.

To complete our discussion, we should also show that if  T2/T1  is not the ratio of
integers, then  x(t)+y(t)  is not periodic.  However, the proof of this is beyond the scope
of the course and will not be given here.

In the case where  T2/T1  is the ratio of two integers, the fundamental period of the
sum signal can usually be found by finding the smallest integers  m  and  n  such that
nT2 = mT1.  In other words, the fundamental period is usually the least common
multiple of  T2  and  T1.  Correspondingly, the fundamental frequency is usually the
greatest common divisor of the fundamental frequencies  f2  and  f1  of the two signals.
We say "usually" because there are also examples like that illustrated in Fact 6 where
the actual fundamental period is smaller than the least common multiple.

As an example, suppose  x(t)  and  y(t)  are the periodic signals shown below with
fundamental periods  2  and  3,  respectively.  Then, their sum  x(t) + y(t)  is periodic
with fundamental period 6.

T = 21

T = 32

4 6 8 10

6 9

6

12

12

12

x(t)

y(t)

x(t) + y(t)

If instead of summing two periodic signals, we sum  M  periodic signals, then a
discussion similar to the one above shows that the sum is periodic when and only when
the ratios of each pair of fundamental periods is a ratio of integers.  Moreover, the
fundamental period of the sum is usually the least common multiple of the fundamental
periods of the individual periodic signals.

Fact 8.  The average of a periodic signal with period  T  over an interval whose length
is a multiple of  T  equals the average over any interval of length  T.  The same applies
to mean-squared valued and energy.

To see why, consider the average over the time interval  [t1,t1+mT]:

M(x)  =  
1

mT ∫
t1

t1+mT

 x(t) dt

 =  
1

mT ( ∫
t1

t1+T

 x(t) dt + ∫
t1+T

t1+2T

 x(t) dt + ... + ∫
t1+(m-1)T

t1+mT

 x(t) dt)
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  =   
1

mT ( ∫
t1

t1+T

 x(t) dt + ∫
t1

t1+T

 x(t) dt + ... + ∫
t1

t1+T

 x2(t) dt)
because  x(t)  is the same in each  t  second interval

  = 
1
T  ∫

t1

t1+T

 x(t) dt

Thus we see that the average over  m  periods reduces to the average over just one
period.

A related "limiting" argument shows that the average over an infinite interval of time
reduces to the average over just one period.

Finally, we note that the average is the same over all intervals of length  T.  This fol-
lows from the fact, illustrated below, that the integral of  x(t)  over any interval of
length  T  is the same, because by periodicity, the same values are being integrated,
though perhaps in a different order.

t1 t  +T t t3t  +T t  +T3

Fact 8 also applies to mean-squared value, because mean-squared value is itself an
average.  It applies to energy because energy is just mean-squared value multiplied by
the interval length.

Signal Envelope:  This is best introduced with an example.  The thick black line
overlaying the signal shown below is the envelope of the signal.  That is, for a rapidly
fluctuating signal  x(t), the envelope is a smooth curve that approximately follows the
positive peaks of the signal.  Admittedly this is not a very precise definition, and there
is no universally accepted definition that can make it precise.  Nevertheless, the
envelope is often a useful concept.

0 50 100 150 200 250 300 350 400
-0.5

0

0.5

As an example, an AM radio station transmits an audio signal by embedding it in the
envelope of a high frequency signal.  Specifically, suppose  m(t)  is the audio signal to
be transmitted. Then the radio station assigned to frequency  fo  transmits a signal of
the form

s(t)  =  (m(t)+c) cos(2πfot)

where  c  is a parameter chosen so that  m(t)+c ≥ 0  for all, or at least most, times  t.
Typically,  fo  is a frequency much higher than the rate of fluctuation of  m(t).  For
example, if  m(t)  is the audio signal shown below,

-0.5

0

0.5

then the transmitted signal  s(t) (m(t)+.5) cos(2πfot)  is

-1

-0.5

0

0.5

1
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Can you see the audio signal m(t) embedded in the envelope of the transmitted signal
s(t)?  Can you think of a way of recovering  m(t)  from  s(t)?

Spectrum

The spectrum of a signal is a terrifically important signal-shape-related characteristic
having to do with the "frequency content" of the signal.  It is so important that we will
not discuss it here.  Rather, beginning with Chapter 3, it will be a focus of much of the
remainder of the class.

Signal Shape Characteristics of Discrete-Time Signals

Discrete-time signals can have all the same shape characteristics as continuous-time sig-
nals.  For example, they can be increasing, decreasing or fluctuating.  Common signal
shapes include all of those mentioned previously:  constant, step, rectangular pulse,
ramp exponential and sinusoidal.  Envelope is again a useful concept, as is periodicity.
Because periodicity is such an important concept, we repeat the discussion of it here,
this time for discrete-time signals.

Periodicity of discrete-time signals:  A discrete-time signal  x[n]  is said to be
periodic with period N (an integer)  if

x[n+N] = x[n]  for all integers  n.

This definition is the same as the definition for continuous-time signals, except that
instead of the equality holding for all continuous times  t,  it holds for all integer times
n.  It is conventionally required that  N > 0.  We now reprise the various facts about
periodicity.  They are essential identical to the corresponding facts for continuous

Fact 1.  A discrete-time signal with period  N  is also periodic with period  mN  for
any positive integer  m.

Fact 2.  The fundamental period, denoted  No,  is the smallest positive integer  N  such
that  x[n+N] = x[n]  for all integers  n.  The reciprocal of  No  is called the fundamental
frequency  fo  of the signal.  That is,  fo = 1/No.  It is the number of fundamental
periods occurring per sample.  (It is always less than or equal to one.)  Warning:
People often say "period" when they mean "fundamental period".

Fact 3.  If  x[n]  has fundamental period  No,  then  x[n]  is periodic with period  mNo
for every positive integer  m.  Conversely, these are the only periods of  x[n].  That is,
if  x[n]  is periodic with period  No,  then  N = mNo  for some integer  m.

Fact 4.  A constant signal, e.g.  x[n] = 3,  is a special case.  It satisfies  x[n+N] = x[n]
for any choice of  N.  Thus it is periodic with period  N  for every value of  N > 0.
However, it is conventionally defined to have fundamental period  No = ∞  and
fundamental frequency  fo = 0.  This somewhat arbitrary definition turns out to be
more useful than other definitions.

Fact 5.  If signals  x[n]  and  y[n]  are both periodic with period  N,  then the sum of
these two signals,  z[n] = x[n] + y[n]  is also periodic with period  N.  This same
property holds when one sums three or more signals.

Fact 6.  The sum of two signals with fundamental period  No  is periodic with period
No,  but its fundamental period might be less than  No.

Fact 7.  The sum of two signals with differing fundamental periods,  N1  and  N2,  is
periodic with fundamental equal to the least common multiple of  N1  and  N2  and
fundamental frequency equal to the greatest common divisor of their fundamental
frequencies  f1  and  f2.  Note that unlike continuous-time case, the ratio of the funda-
mental periods of discrete-time periodic signals is always the ratio of two integers.
Therefore, the sum is always periodic.  Similarly, the sum of  M  periodic signals is
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periodic with fundamental period equal to the least common multiple of the
fundamental periods of the individual signals.

Fact 8.  The average of a periodic signal with period  N  over an interval whose length
is a multiple of  N  equals the average over any interval of length  N.  The same applies
mean-squared value and energy.

C.  Two-Dimensional Signals

A picture or image, as we will usually say, can also be modeled as a signal.  However,
in this case, it must be modeled as a two-dimensional signal  x(t,s).  That is, instead of
single independent parameter  t  representing time, there are two independent
parameters  t  and  s,  representing vertical and horizontal position respectively.  That
is,  x(t,s)  represents the intensity or brightness of the image at the position specified by
horizontal position  t  and vertical position  s,  relative to some coordinates.  All of the
previously mentioned concepts and characteristics can be extended to apply to two-
dimensional signals.  But we won't discuss them here.  However, we do wish to mention
that two-dimensional images can be discrete-time as well as continuous-time (discrete-
space and continuous-space are better terms).  In this case, the signal is  x[m,n]  where
m  and  n  are integers representing vertical and horizontal positions, respectively.

s

t
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II. Elementary Signal Operations

A . Elementary Operations On One Signal.

In our discussions to come of signals and systems, we will routinely use a number of
elementary operations that, when applied to one signal, result in another closely related
signal.  In the following we introduce these using continuous-time notation.  With one
exception to be noted, they apply equally to discrete-time signals, as well.

Adding a constant:  This is the operation of adding a constant to the signal.  More
specifically, there is a number  c  that is added to the signal value at every  time  t.  If
the original signal is  x(t),  then the result is a new signal

y(t) = x(t) + c .

It should be easy to see that this has the effect of increasing the average value of  x  by
c.  That is,  M(y) = M(x) + c.

t

1 2 3 4

x(t)

2
4

1 2 4

y(t)  = x(t) - 2

Amplitude scaling:  Amplitude scaling is the operation of multiplying a signal by a
constant.  That is, there is a constant  c,  called a scale factor or gain, the value of the
signal at every time t  is multiplied by  c.  If the signal being scaled is  x(t), then the
result of the scaling is

y(t) = c x(t) .

This has the effect of scaling both the average and the mean-squared values.
Specifically,  M(y) = c M(x)  and  MS(y) = c2

 MS(x).

t

1 2 3 4

x(t)

2
4

t

1 2 3 4

y(t) = (1/2) x(t)

2
4

Squaring:  Here we simply square the value of the signal at each time, yielding

y(t) = x2(t) .

t

1 2 3 4

x(t)

2
4

1 2 4

y(t) = x (t)16
2

Absolute value:  As the name suggests,

y(t) = |x(t)| .

t

1 2 3 4

x(t)

2
4

1 2 3 4

y(t) = |x(t)|

2
4

Time shifting:  If  x(t)  is a signal and  T  is some number,  then the signal

y(t) = x(t-T)
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 is a time-shifted version of  x(t).  That is, the value of  y  at time  t  is precisely the
value of  x  at time  t-T.  This means that if  T > 0,  then as illustrated below, anything
that "happens" in the signal  x  also happens in the signal  y,  but it happens  T  time
units later in  y  than in  x.  Similarly, if  T < 0,  it happens  T  time units earlier in  y.
It is useful to remember the rule that a positive value of  T  leads to a right shift of the
plot of  x(t)  and a negative value of  T  leads to a left shift.

t
1 2 3 4

x(t)

2
4

t
1 2 3 4

y(t) = x(t-1/2)

2
4

Time reflection/reversal:  The time reflected or time reversed version of a signal
x(t)  is

y(t) = x(-t).

That is, whatever happens in  x  also happens in  y,  but at the negative of the time it
happens in  x.

t

1 2 3 4

x(t)

2
4

-1-2-34

y(t) = x(-t)

Time scaling:  The operation of time-scaling a signal  x(t)  produces a signal

y(t) = x(ct)

where  c  is some positive constant.  If  c > 1,  this has the effect of "speeding up time"
in the sense that the value of  y  at time  t  is the value of  x  at time  ct,  which is a later
time.  Alternatively, whatever happens in  x  in the time interval  [t1,t2]  now happens
in  y  in the earlier and shorter time interval  [t1/c, t2/c].

t

1 2 3 4

x(t)

2
4

1 2 3 4

y(t) = x(2t)

2
4

This is the one property that for which the discrete-time case includes an extra wrinkle.
Specifically, in discrete-time, the time values must be an integer.  Therefore, if we take

y[n] = x[cn] ,

then  c  needs to be an integer.

Combinations of the above operations:  In the future we will occasonally
encounter signals obtained by combining several of the operations introduced above,
for example,

y(t) = 3 x(-2(t-1)) .

To figure out what signal this is, it is useful to introduce some intermediate signals.
For example, in the above, we might start by plotting  x(t)  and u(t) = 3 x(2t), as shown
next.
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x(t)

t
1
2
3

2 4

u(t) = 3 x(2t)

t
1
2
3

1 2

which is an amplitude scaling and time scaling of  x(t).  Next let's plot

v(t)  =  u(-t)  =  3 x(2(-t))  =  3 x(-2t).

v(t)

t
1
2
3

-1-2-3

Finally, we plot  v(t-1) = 3 x(-2(t-1))  =  y(t)

y(t) = v(t-1)

-1-2-3 1

Note that you can also find  y(t)  by applying the scaling, time shifting and time
reversal in some other order, or by applying several operations at a time.  But until you
are very experienced, it is advisable to apply only one or two at a time.

B.  Elementary Operations On Two Or More Signals

Summing:  As its name suggests, this is simply the operation of creating a new signal
as the sum of two or more signals, as in

z(t)  =  x(t) + y(t) .

More specifically, the value of  z  at time each time  t  is the sum of  x  at time  t  and  y
at time  t.

Linear combining:  Linear combining is like summing except that we allow
amplitude scaling (i.e. multiply the signals by constants) in addition to summing, as in

y(t) = 3 x1(t) + 4 x2(t) - 2 x3(t) .

In this case,  y(t)  is said to be a linear combination of  x1(t),  x2(t)  and  x3(t).  The
scale factors multiplying the  x(t)'s  are often called coefficients.

Linear combinations arise in a several ways.  As one example, sometimes we are given
a collection of signals, say  x1(t),  x2(t)  and  x3(t)  and are asked to synthesize another
signal  y(t)  as a linear combination of the signals in the collection.  For example,
suppose we need to create the signal  y(t),  but our hardware can only of produce
signals  x1(t),  x2(t)  and  x3(t)  and perform linear combinations.  Often, it is not
possible to exactly synthesize  y(t)  from the given collection and the synthesis must
necessarily be approximate.

As another example, sometimes we are given a signal  z(t)  that is known to be a linear
combination of   x1(t),  x2(t)  and  x3(t),  and we are asked to find the scale factors.
This task, which is called analysis, happens for example in communications systems,
where the scale factors determine the information carried by the signal  y(t).  It also
happens in Fourier analysis, to be discussed considerably throughout the course, where
we consider a signal  y(t)  to be the linear combination of sinusoidal signals with
different fundamental frequencies.
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Multiplying:  As its name suggest, this is simply the operation of creating a new
signal as the product of two or more signals, as in

z(t)  =  x(t) y(t) .

More specifically, the value of  z  at time each time  t  is the product of  x  at time  t
and  y  at time  t.

Signal multiplication is a basic operation of most radio transmitters which, as in the
example of AM radio described earlier, typically multiply a sinusoidal signal by some
information bearing signal.

Concatenating:  Concatenation is the process of appending one signal to the end of
another.  For example if  x(t)  is a signal with support interval  (0,t1)  and  y(t)  is a
signal with support (0,t2),  then as illustrated below their concatenation is the signal

z(t)  =   

 x(t), t≤t1
y(t-t1), t>t1

x(t)

t 1 t

y(t)

t 1 t +t 21

z(t)

Concatenation happens, for example, in digital communications where, for example, to
transmit a sequence at the rate of one bit every  T  seconds, there is a signal  s0(t)  with
support  (0,T)  used to send  0's,  a signal  s1(t) also with support  (0,T)  used to send
1's,  and the transmitted signal is the concatenation of these.  For example, when the
signals shown below

t
1

1
s (t)0

t
1

1
s (t)1

are used to send the binary sequence  0,0,1,0,1,1,1,...  the transmitted signal10 is

1

1

2 3 4 5

Concluding Remarks

The signal operations discussed in this section are elementary operations that are used in
a variety of situations.  One may view them as basic tools or building blocks.  The
signal operations considered later in the course (e.g. Chapters 5-8 of the text) are more
sophisticated operations, which are developed with some specific task in mind.  They
can be thought of as systems that is, when the operation is applied to a signal  x(t), the
signal  x(t)  is viewed as the input to a system that performs the operation and produces
at its output another signal  y(t),  which is the result of the operation.  In such cases, we
often draw a block diagram like the one shown below.  Much of the course will be
devoted to designing systems to perform the tasks described in the next section.

x(t) (t)system

input
signal

output
signal

10As usual, vertical lines are shown just emphasize the transitions between transmitted bits, as well as the jumps from 0 to
1 and 1 to 0.



Introduction to Signals EECS 206 University of Michigan

April 30, 2002 23 D.L. Neuhoff

III.  Signal Similarity Measures

In many situations, we need a quantitative measure of the similarity of two signals.  For
example,  suppose  x(t)  is the signal some system should ideally produce,  y(t)  is the
signal the system actually produces.  Then, as a measure of how well the system has
performed, we need a quantitative measure of how similar y(t)  is to  x(t).  As another
example, suppose r(t)  is a measured signal that is either the "desired" signal  s1(t)  plus
some measurement noise, or the "desired" signal  s2(t)  plus some measurement noise,
and suppose a system must be built that decides which of the two desired signals the
measured signal  r(t)  contains.  Such a system needs a signal similarity measure in
order to compare  r(t)  to  s1(t)  and  r2(t)  to  s2(t).

In summary, signal similarity measures are needed for quantiative performance
measures for the systems we design and as an integral piece of certain systems.  In the
following we introduce and discuss the two most important signal similarity measures.

A.  Difference Energy, Mean-Squared Difference and Mean-Squared Error

The difference energy between signals  x(t)  and  y(t)  is simply the energy of the
difference signal  x(t)-y(t).  For continuous-time signals, the difference over the time
interval  (t1,t2)  is

E(x-y)  =   ∫
t1

t2
 (x(t)- x̂(t))

2
  dt .

Similarly, for discrete-time signals, the difference energy over the time interval [n1,n2]
is

E(x-y)  =  ∑
n1

n2
 (x[n]-x̂[n])2 .

A closely related signal similarity measure is the mean-squared difference (MSD)
between signals  x(t)  and  y(t), which is simply the mean-squared value of the
difference signal  x(t)-y(t).  For continuous-time signals, the MSD over the time
interval  (t1,t2)  is

MSD(x,y)  =  
1

t2-t1 ∫
t1

t2
 (x(t)- x̂(t))

2
  dt  =   

1
t2-t1  E(x-y) .

Similarly, for discrete-time signals, the MSD over the time interval [n1,n2]  is

MSD(x,y)  =  
1

n2-n1+1 ∑
n1

n2
 (x[n]-x̂[n])2 =  

1
n2-n1+1  E(x-y) .

When one of the signals is considered to be the "desired" signal and the other is consi-
dered to be an approximation to it, then the difference signal  x(t)-y(t)  is considered to
be an error signal, and the mean-squared difference is called the mean-squared error
and abbreviated MSE(x,y)  or simply  MSE.  MSE is considered a measure of the qual-
ity of  y(t)  as an approximation to  x(t),  with small MSE indicating good quality.

In many situations, the significance of a particular value of MSE generally depends on
the size or strength of the signal  x(t).  For example, an MSE value of 10 is considered
large if the squared signal values of the desired signal are mostly smaller than 10, and is
considered small if the squared values of the desired signal are much larger than 10.
For such reasons, it is common to use signal-to-noise ratio as a measure of signal
quality, which is defined by

SNR(x,y)  =  
σ2(x)

MSE   ,

where  σ2(x),  which is the variance of  x(t),  is used as the measure of signal size.
Large signal-to-noise ratio indicates good quality.
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B.  Signal Correlation

Another measure of the similarity of signals  x(t)  and  y(t)  is their correlation, which
is defined

C(x,y)  =  ∫
t1

t2
 x(t) y(t) dt ,

where  (t1,t2)  is the time interval of interest.  Similarly, the correlation between two
discrete-time signals  x[n]  and  y[n]  is defined as

C(x,y)  =  ∑
n1

n2
 x[n] y[n] ,

where  [n1,n2]  is the time interval of interest.  The discussion to follow focuses on con-
tinuous-time signals.  But everything applies equally to discrete-time signals.

To get a feeling for why correlation is a good measure of signal similarity examine
consider the signal  x(t)  shown below

-2

0

2

and consider the similarity of each of the signals below,  y1(t),  y2(t),  y3(t),  y4(t),  to
x(t).
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x(t)*y4(t)

corr = -3.67

As a reference,  x(t)  is shown with a dotted line in each of the above plots.   Also
shown below each signal is a plot of the product of  x(t)  with the signal.  The correla-
tion between  x(t)  and the given signal, which is the area under this plot, is also marked
on the plot.  Intuitively, we see that  x(t)  is more like  y1(t)  than the other signals, and
this is reflected in  C(x,y1)  being larger than the other correlations.  What is happening
is that  y1(t)  tends to be positive where  x(t)  is positive and negative where  x(t)  is
negative.  Thus, the product  x(t) y1(t)  is mostly positive, and the correlation  C(x,y1)
is large.  The signal  y2(t)  has the same sign as  x(t)  less often.  Thus  x(t) y2(t)  has
negative area cancelling some of the positive area, leading to a smaller value of
correlation.  This is taken to the extreme in  x(t) y3(t),  for which the positive area is
nearlyy completely cancelled by the negative area, causing  C(x,y3)  to be zero.  The
fourth signal,  y4(t),  almost always has the oppposite sign of  x(t),  causing  x(t) y4(t)
to be almost entirely negative, leading to  C(x,y3)  being very negative.

These examples show that  C(x,y)  tends to be large when  y(t)  follows the same trends
as  x(t) -- positive at times  t  that  x(t)  is positive,  negative at times  t  that  x(t)  is
negative.  This explains why the everyday word "correlation" is taken as the name for
the similarity measure  C(x,y).  We say that  x(t)  and  y(t)  are positively or negatively
correlated, according to whether  C(x,y)  is positive or negative.  When  C(x,y) = 0,
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we say the signals are uncorrelated, meaning that they are very different in the sense
that the positivity of one at time  t  gives no clues as to the positivity of the other.

As a next set of examples consider correlating  x(t)  with  y1(t),  shown above, and also
with  y5(t) = 3 y2(t).

0 2 4
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0

2

y1(t)

0 2 4

-2

0

2

x(t)*y1(t)

corr = 3.47

0 2 4

-5

0

5

y5(t)

0 2 4
-10

0

10
x(t)*y5(t)

corr = 6.19

W observe that even though  x(t)  is intuitively more similar to  y1(t)  than to  y5(t),
the correlation  C(x,y1)  is smaller than the correlation  C(x,y5).  What is happening is
that correlation is being heavily influenced by the fact that  y5(t)  is considerably larger
signal than  y1(t),  i.e. it has much larger energy.  In many situations, it is important to
prevent correlation from being influenced by signal size.  In such cases, it is customary
to use normalized correlation as defined by

CN(x,y)   =   
C(x,y)

√E(x)√E(y)
   =   

1
√E(x)√E(y)

  ∫
t1

t2
 x(t) y(t) dt

as the signal similarity measure.  Here, we have divided  C(x,y)  by the square root of
the energies of both signals.  The following lists the values of  C(x,y)  and  CN(x,y)

y1(t) y2(t) y3(t) y4(t) y5(t)

E(y) 5.42 5.44 4.95 5.42 49.0

C(x,y) 3.47 2.06 -0.08 -3.67 6.19

CN(x,y) 0.89 0.53 -0.02 -0.94 0.53

We see now that  CN(x,y5) = CN(x,y2),  i.e. that normalized correlation is not affected
by the size of the  y5(t).

If, as suggested by the example above, normalized correlation is not affected by the
sizes of the signals, then there ought to be some largest value that it can have.  The
following inequality, called the Cauchy-Schwarz inequality, shows that the normalized
correlation can never be larger than one, nor less than negative one.

√E(x) √E(y)  ≤  C(x,y) ≤ √E(x) √E(y)

Equivalently,

-1  ≤  CN(x,y)  ≤  1 .

The proof of this inequality is beyond the scope of the course11.

Notice that  if  y(t)  is simply an amplitude scaling of  x(t),  as in  y(t) = a x(t)  for all t,
where  a > 0,  then

11One may find a version of the Cauchy-Schwarz inequality in most linear algebra textbooks.
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E(y)  =  E(ax)  =  ∫
t1

t2
 ( a x(t) )2 dt  =  a2 ∫

t1

t2
 x2(t) dt  =  a2 E(x)

C(x,y)  =  ∫
t1

t2
 x(t) a x(t) dt  =  a ∫

t1

t2
 x2(t) dt  =  a E(x)

 √E(x) √E(y)  =  √E(x) √a2
 E(s)  = a E(x) .

Thus in the case we see that

C(x,y) = √E(x) √E(y)

or equivalently

CN(x,y) = 1 ,

i.e. the Cauchy-Schwarz relation holds with equality.  In fact, this is the only way to
obtain equality.  That is, it can be shown that

C(x,y) = √E(x) √E(y),  or equivalently,  CN(x,y) = 1,

when and only when   x(t)  and  y(t)  are the same except for a positive multiplicative
scaling, i.e. when and only when

y(t)  =  a x(t)  for some  a > 0  and all  t .

Similarly, it can be shown that the only way for  C(x,y)  to equal  -√E(x) √E(y),  or
equivalently for  CN(x,y)  to equal  -1,  is when and only when  x(t)  and  y(t)  are the
same except for a negative multiplicative scaling, i.e. when and only

y(t)  =  a x(t)  for some  a < 0  and all  t .

A corollary to the Cauchy-Schwarz inequality is the fact that the correlation of a signal
with itself equals the signals energy, i.e.

C(x,x)  =  E(x)   for any signal  x.

The relation between correlation and mean-squared difference energy:  The
relation between mean-squared difference and signal correlation is

E(x-y)  =  E(x) - 2 C(x,y) + E(y) .

Thus, for example, a large positive correlation  C(x,y)  implies a small difference
energy  E(x-y).  This relation is demonstrated below.

       E(x-y) =  ∫
t1

t2
 (x(t)-y(t))2

  dt   =  ∫
t1

t2
 (x

2
 (t) -2 x(t) y(t) + y(t)

2
 ) dt

=  ∫
t1

t2
 x2(t) - 2 ∫

t1

t2
 x(t) y(t) dt  +  ∫

t1

t2
 y2(t) dt

=   E(x) - 2 C(x,y) + E(y)

Since difference energy and correlation are closely related, the choice of which to use is
a matter of taste, of convenience, or dependent upon other factors.  For example,
correlation  C(x,y)  tends to preferred over difference energy in situations where one
signal, say  x,  is much larger than the other,  y,  is small.  In this case  E(x-y) ≅  E(x),
which indicates that  E(x-y)  depends very weakly on the smaller signal.  Thus, it  is
very sensitive to noise and computational roundoff errors.  In contrast,  C(x,y)  is
always greatly influenced by  y.  For example, when  y  is much smaller than  x,
doubling  y  causes  C(x,y)  to double, but has little effect on  E(x-y).  Thus correlation
is less sensitive to noise and roundoff errors.
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The uses of correlation in EECS 206

Correlation will be used in a couple of the lab assignments as a method for detecting,
classifying or recognizing signals.  It will also be seen later that one of the principal
analysis techniques that we study (Fourier analysis) and the principal kind of systems
we study (linear time-invariant filters) are based on correlation.  That Fourier analysis
is based on correlation relates to the discussion below about "signal components".

Signal components12

The question addressed in this subsection is:  What does it mean for one signal to be a
component of another?  Specifically, suppose we are given signals  x(t)  and  p(t)  (or
x[n]  and  p[n]  in the discrete-time case).

• Is there a component of  x(t)  that is like  p(t)?  (or of  x[n]  that is like  p[n]?)

• If so, how much  p(t)  is in  x(t)?  (or  p[n]  in  x[n]?)

• How to define "how much of ___ is in ___ "?

For example, is there a component of  x(t)  that is like  p(t) = cos(3t)?

Vector geometry:  Such questions are similar to the following traditional questions
in vector geometry:  Suppose  x = (x1,...,xN)  and  p = (p1,...,pN)  are N-tuple vectors,
illustrated below.

x
p

• Is there a component of  x  that is like  p?

• How much of  p  is in  x?

The conventional approach to answering these questions in vector geometry is to find
the value  α   such that  α  p  is as close to  x  as possible, i.e. such that  ||x-αp||  is as
small as possible, where  ||u-v||  denotes the Euclidean distance between  u  and  v,  as
defined by

||u-v||  =  √∑i=1

N

 (ui-vi)
2
 

For example,  α  p  for one choice of  α  is illustrated below.

α p

||x-αp||
x

p

Actually, it's a bit easier to find the value of  α   that minimizes  ||x-αy||2,  because this
avoids the square root.  To find the proper  α ,  let's equate to zero the derivative of
||x-αy||2  with respect to  α ,  and solve for  α .  First let's rewrite  ||x-αy||2:

||x-αp||
2
   =  ∑

i=1

N

 (xi-αpi)2  =  ∑
i=1

N

 x
2
i  - 2α ∑

i=1

N

 xi pi + α2 ∑
i=1

N

 p
2
i

=  ||x||2 - 2 α  (x o p)  + α2
 ||p||2

12This section should be skipped or skimmed.  It becomes suggested reading, but not required, when Fourier analsysi is
introduced.
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where  ||x||  and  ||p||  are the lengths of  x  and  p,  respectively,  and  (x o p)  is the dot
product defined by

(x o p)  =  ∑
i=1

N

 xi pi

Now differentiating and equating to zero gives

0  =  
d

dα ||x-αp||2  =  
d

dα ( )||x||2 - 2 α  (x  o p)  + α 2
 ||p ||2

=  -2 (x o p)  + 2α||p||2 ,

which yields

α   =  
(x o p)
||p||2

We conclude that component of  x  that is like  p  is   
(x o p)
||p||2

 p .

Fact:  α  = 
(x o p)
||p||2

  is the unique value of  α   that makes the residual vector  (x-αp)  and

p  orthogonal,  where  u  and  v  are said to be orthogonal if  u o v = 0.

Proof:  The dot product of  (x-αp)  and  p  is

(x-αp) o p  =  (x o p) - α(p o p)    by the linearity of the dot product

   =  (x o p) - α ||p||2

which is zero when and only when  α = 
(x o p)

||p||2
 , i.e. when and only when  (x-αp)  and  p

are orthogonal.

With this fact in mind, we see that the component of  x  that is like  p  is the vector in
the direction of  p  obtained by projecting  x  onto the direction of  p  as illustrated
below.

x
p

α  p

Back to signals:  Let us now return to the original questions for signals:  Suppose we
are given signals  x(t)  and  p(t).

• Is there a component of  x(t)  that is like  p(t)?

• If so, how much  p(t)  is in  x(t)?

• How to define "how much of ___ is in ___ "?

Our approach will be to find the value  α   such that the difference energy
E(x(t)−α  p(t))  is as small as possible.  We will then say that  "α  p(t)  is the component
of  x(t)  that is like  p(t)"  and  "α   is the amount of  p(t)  that is in  x(t)".  The same
approach applies to discrete-time signals.

The idea is that the question we are asking is just like the question for vectors, and we
can use the same approach.  The only difference is that instead of Euclidean distance as
a measure of similarity we use difference energy.  Indeed, for discrete-time signals the
question is exactly the same, because the signals are vectors and difference energy is
Euclidean distance squared.  Thus in the discrete-time case, we can simply use the
answers to the vector question.  In doing so, we recognize that what is called "dot
product" in the "vector domain", is just what we have called "correlation".  Morever, it
is easy to check that with "correlation" replacing "dot product", "energy" replacing
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"length squared", and "uncorrelated" replacing "orthogonal", the answer we found to
the vector question applies to continuous-time signals as well as to discrete-time signals.
Therefore, we immediately obtain the following:

• The value of  α  that minimizes the difference energy   E(x(t) − α p(t))  is

α  = 
c(x,p)
E(p)  .

• The amount  p(t)  that is in  x(t)  is  
c(x,p)
E(p)  .

• The component of  x(t)  that is like  p(t)  is  
c(x,p)
E(p)  p(t) . (++)

• α  = 
c(x,p)
E(p)    is the unique value that makes the difference signal  (x(t)-αp(t))

and  p(t)  uncorrelated.

• These answers apply to discrete-time signals as well, with  p[n]  replacing
p(t).

• These answers apply to complex-valued signals, in discrete or continuous
time.  (Correlation between complex-valued signals is discussed below.)

Comments:  Engineers have long recognized the connnections between signals and
vectors.  As a result, basic ideas from geometry, and more generally from linear alge-
bra, are commonly used in signals and systems analysis.  One of the most beneficial
transferences is the idea that we can draw geometric pictures that represent signals and
their relationships, such as those on the previous pages.  For example, uncorrelated sig-
nals are drawn at right angles to one another.  It often happens that a geometric picture
will help one to understand some complex signal situation.  It is also true that studying
linear algebra will lead to increased understanding of signals and systems.  For exam-
ple, you might wish to learn as much as possible about linear algebra in Math 216 and
to take Math 419 as an elective.
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III. Basic Signal Processing Tasks

In this section, we describe three broad and nearly ubiquitous tasks that require the
processing of signals.  That is, there is need to develop systems that perform these tasks.
Much of the remainder of the course will be devoted to developing techniques to design
and improve such systems.

The first two tasks have a similar flavor.  In each, the signal to be processed contains a
component that interests us and a component that does not.  That is, the signal  r(t)  to
be processed can be modeled as

r(t) = s(t) + n(t) ,

where  s(t)  is the component that interests us and  n(t)  is the component that does not.
For example, the component that interests us might be the signal produced by someone
speaking into a microphone, and the component that does not might be the signal pro-
duced by background noise.  In the first task, called signal recovery or noise reduction,
the goal is to recover the signal component  s(t)  that interests us.  For example, we
might wish to recover the speech signal without the background noise.  In the second
task, called signal detection or signal classification or signal recognition, we wish to
make a decision about the signal component that interests us.  For example, we might
wish to decide the identity of the speaker or what the speaker has said.  These two tasks
will be introduced in the next two subsections.

In each of the tasks, the noise  n(t)  is not a known signal.  If it were known, we could
simply subtract it from  r(t),  and there would be no need for a signal recovery or sig-
nal detection system.  We also assume that the desired signal  s(t),  or some aspect of it,
is not known.  If  s(t)  were entirely known, we could dispense with  r(t),  and simply
display the signal  s(t).  On the other hand, there must be something we do know about
s(t)  and  n(t),  such as their signal value or signal shape characteristics.  Indeed, there
must be something we know that is different for  s(t)  than for  n(t).  Otherwise, we
will have no way to separate one from the other.  For example, much of the course will
be devoted to developing systems that work when  s(t)  and  n(t)  have spectra that
differ in known ways, e.g. one contains only low frequencies and the other contains
only high frequencies.

The third task to be discussed is signal digitization.  Nowadays, when signals such as
audio or pictures or video must be processed, stored or transmitted, it is generally done
in digital fashion, i.e. the data is converted to binary.  This is done because excellent
digital techniques have been found, and because the bits so produced can be processed,
transmitted and stored rapidly and reliably.

A.  Signal Recovery/Extraction/Enhancement

Suppose we are given a signal  r(t)  with two components,

r(t)  =  s(t) + n(t) ,

and our task is to design a system, such as illustrated below, which processes  r(t)  in
order to produce  s(t),  or more precisely, an approximation  ŝ(t)  to  s(t).

signal recovery/
enhancement/

extraction 
system

 

r(t)

input
signal

output
signal

s(t)^

We consider  r(t)  to be the original or measured or received signal,  s(t)  to be the
desired signal, and  n(t)  to be noise.  It is sometimes called signal recovery, because
the system is recovering the signal  s(t)  from the noise corrupted signal  r(t).  It is also
called noise reduction or noise suppression, because it attempts to do precisely this.
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Examples of signals requiring recovery/extraction/enhancement include:

• An audio signal, especially when it is particularly faint, or when the micro-
phone is part of a hearing aid, or when there is much background noise, such
as in an automobile or helicopter or crowded cocktail party.

• A photograph or movie or video taken in faint light

• A signal being played back on an analog tape player (video or audio).  Mag-
netic tapes introduce significant amounts of noise due to the granularity of the
magnetic media.

• An AM or FM radio signal, or an analog TV signal, as it emerges from the
receiving antenna.  There is always lots of background noise, much of it due
to other radio signals.

• A digital communication signal as it emerges from the receiving wire, antenna
or other sensor.  This signal must be extracted from background noise and
from all other communication signals on the same medium.

Linear Filters:  There are many possible approaches to signal recovery.  In this
course, we focus mostly on linear filtering, which is the most common approach.  Let
us introduce it with an example.  Suppose  s(t)  is an audio signal, for example the one
shown below.

-0.5

0

0.5

Suppose the measured signal is  r(t) =  s(t) + n(t),  where  n(t)  looks like the signal
below.

-0.5

0

0.5

Then r(t)  is

-0.5

0

0.5

Since the noise signal fluctuates more rapidly than the audio signal13, a natural approach
to reducing the noise is to use a running-average filter.  That is, we design a system that
replaces  r(t)  by an average of  r(t)  over an interval up to time  t.  Specifically, it
replaces  r(t)  with the average over the of  r(t)  over the time interval  (t-T,t),  where
T  is chosen small enough that the audio signal  s(t)  changes little in the interval and
large enough that the noise signal fluctuates a great deal in the interval and,
consequently, averages to a small value.  In other words, the running-average filter
produces the output signal

13This is the signal-shape charactertistic that differentiates the  s(t)  from  n(t)  in this example.



Introduction to Signals EECS 206 University of Michigan

April 30, 2002 32 D.L. Neuhoff

ŝ(t)  =  
1
T ∫

t-T

t

 r(t') dt' .

When such a filter is applied to  r(t),  it has the effect of smoothing the signal  r(t).  In
our example, it produces the signal shown below, which sounds much more like  s(t)
than does  r(t).  Notice that the filtering has not only reduced the noise, but it has also
modified the desired signal somewhat.

-0.2

0

0.2

While the running average filter is fairly common, there are many other linear filters.
As a precursor to introducing the full variety of possible linear filters, let us note that
by applying the change of variables  t" = t'-t  to the above integral, we may rewrite the
running average filter as producing

ŝ(t)  =  
1
T ∫

-T

0

 r(t+t") dt" ,

which in turn may be rewritten as

ŝ(t)  =  ∫
-∞

∞
 r(t+t") w(t") dt" .

where

w(t")  =  
 

 1

T, -T≤t"≤0

0, else
.

Other linear filters are obtained by replacing the function  w(t"),  which we call a
weighting function, by something else.  That is, the output is produced by a running
average, except that the average is with respect to a weighting function  w(t").  We
obtain different linear filters by making different choices of  w(t").  For example, if we
choose

w(t")  =  
 

 e3t", t"≤0

0,   t">0

Then

ŝ(t)  =  ∫
-∞

0

 r(t+t") e3t" dt"

In this case, we see that  ŝ(t)  is the average of all past values of  r(t).  However, in
computing the average, past values are multiplied by exponentially decreasing weights.

By careful choice of the weighting function  w(t"),  one can develop filters that do a
better job of extracting a signal from noise than the running average filter.  Quite a
different sort of weighting function is needed to perform the complex task of extracting
a single radio signal from all those at other frequencies.  As the course progresses, we
will develop better and better techniques for designing filters for recovering signals or
suppressing noise.

Actually, in this course, we will focus primarily on discrete-time linear filters for
filtering discrete-time signals.  (Chapters 5-8 of our text.)  Specifically, a discrete-time
filter performs the analogous operation
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ŝ[n]  = ∑
k=-∞

∞
 r[n+k] w[k] ,

where the  w[k]'s  are a sequence of weights that distinguish one linear filter from
another.  For example, if  w[k] = 1/M,  k = -M+1,...,0,  then we obtain a discrete-time
running average filter, which produces

ŝ[n]  =  
1
M ∑

k=n-M+1

n
 r[k]  .

Performance Measure:  As engineers, wherever possible we wish to quantify the
goodness of the systems that we build.  In this course, for the signal recovery task, we
will use mean-squared error (MSE) as our measure of goodness.  Specifically, if the
signal  s(t)  has support interval  (t1,t2),  then

MSE  =  
1

t2-t1 ∫
t1

t2
 (s(t)- ŝ(t))2 dt

Our goal, then, is is to design a system that makes  MSE as small as possible.

One be aware that MSE is sensitive to scale and to time shifts.  For example, suppose
the signal recovery system has completely eliminated the noise, but has scaled and
delayed the somewhat, for example, suppose it prodcues  ŝ(t) = 1.2 s(t-.1).  Then, even
though the system has done well, the measured MSE may be large.  In such cases, we
may wish to allow  ŝ(t)  to be scaled and time-shifted before measuring MSE.

Other Signal Recovery Tasks:  There are other situations where the desired signal
and noise are not simply added.  Rather  r(t)  depends on the desired signal  s(t)  in
some more complicated way.  For example, in AM radio transmission the audio signal
we wish to recover is the envelope of the transmitted signal (minus a constant), and it is
desired to recover this audio signal from the transmitted signal plus noise. In tomo-
graphic imaging (e.g. X-ray, MRI, PET, etc.), the desired signal is a two or three-
dimensional image, which must be extracted from a complex set of measurements.  The
same is true of synthetic aperture radar.  These are advanced topics that will not be
pursued in this course or in these notes.

B . Signal Detection/Classification/Recognition

Suppose we are given a signal  r(t)  with two components,

r(t)  =  s(t) + n(t) ,

and our task is to design a system, such as illustrated below, which processes  r(t)  and
produces a decision about  s(t).

signal detection
classification
recognition 

system
 

r(t)

input
signal

decision

There are three closely related versions of this, introduced below along with examples.

1. Signal/No Signal?  In this case,  s(t) = 0  or  s(t) = v(t),  where  v(t)  is some
known or partially known desired signal.  From  r(t),  the system must decide
which of these two possibilities has occurred.  This is considered to be a detec-
tion or recognition task because the goal is to detect or recognize whether or not
u(t)  has occurred.  Some specific examples are given below.

•  Radar:  Decide if the signal  r(t)  from the receive antenna contains a reflected
pulse at time  to.  The same issues apply to sonar.
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•  Dollar bill changer:  Decide if the signal  r(t)  obtained by optically scanning a
bill is due to a genuine dollar bill.

•  Fingerprint recognition:  Decide if the signal  r(t)  obtained by optically scan-
ning a fingerprint contains the fingerprint of John Smith.  Similar tasks include
recognition from retinal scans or voice prints.

•  Heart monitoring.  Decide if an ekg signal  r(t)  contains a characteristic indi-
cating a heart defect.

2. Which Signal?  Here,  s(t) = v1(t)  or  v2(t)  or  ...  or  vM(t),  where  M  is
some finite integer and the  vi(t)  are known signals.  From  r(t)  decide which of
the  vi(t)'s  is contained in  r(t).  This is considered to be a classification or
recognition task because the goal is to classify  r(t)  according to which  vi(t)  has
occurred, or equivalently to recognize which  vi(t)  has occurred.  Some specific
examples are give below.

•  Digital communication receiver:  Decide if the received signal  r(t)  contains
the signal representing "zero" or the signal representing "one".  That is, the sys-
tem must decide if the transmitter sent "zero" or "one".  In some systems, the
transmitter has more than two signals that it might send, and so the receiver must
make a multivalued decision.

•  Optical character recognition:  Decide if a character printed on paper is  a or b
or c or ... .  This is especially challenging when the characters are handwritten.

•  Spoken word recognition:  Decide what spoken word is present in the signal
r(t)  recorded by a microphone.

•  The "signal/no signal" task may be considered to be a special case of the "which
signal task".

3. Signal? And if So Which Signal?  This is a combination of the two previous
subtasks.  Suppose  s(t)  equals  0  or  v1(t)  or  v2(t)  or  ...  or  vM(t).  From
r(t)  decide whether or not  s(t) = 0,  and if not, decide which of the  vi(t)'s  is
contained in  r(t).  Examples:

•  Digital communication receiver:  Some digital communication systems operate
asynchronously in the sense that the receiver does not know when the bits will be
transmitted.  In this case, the receiver must decide if a bit is present, and if so, is
it a zero or a one.

•  Personal identification system:  Decide if a thumb has been placed on the
electronic thumbpad, and if so, whose thumb.

•  Touch-tone telephone decoder:  Decide if the signal from a telephone contains
a key press, and if so, which key has been pressed.

 •  Spoken word recognition:  Decide is a word has been spoken and if so, what
word.

For brevity, we will use the term detection as a broad term encompassing all of the
above.

Detection Systems:  As illustrated below, a detection system ordinarily has two sub-
systems:  the first processes the received signal in order to produce a number (or
several numbers) from which a decision can be made.  The second makes the decision
based on the number (or numbers) produced by the first.  The number or numbers
produced by the first system are called decision statistics or feature values, and the
first subsystem is called a decision statistic calculator or a feature calculator.  The
second subsystem is called the decision maker or decision device.  We will discuss two
general types of detection systems, corresponding to two types of decision statistic
generators -- energy detectors and correlating detectors.
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decision statistic
calculator

decision
makerr(t)

decision
statisticinput

signal decision

Quality/Performance Measures:  For detection systems, the most commonly used
measure of performance is the error frequency, which as its name suggests, is simply
the frequency with which its decisions are incorrect.  We let the symbol  fe  denote the
error frequency.  The typical goal is to design the detection system to minimize  fe.

In some situations, certain types of errors are more significant than others.  For
example, from the point of view of the owner of a dollar bill recognizer, classifying a
counterfeit bill as valid is a more significant error than classifying a genuine dollar bill
as invalid.  In such cases, one will want to keep track of the frequency of the different
types of errors.  And one may choose to minimize the total frequency of errors subject
to constraints on the frequencies of certain specific types of errors.  For example, the
owner of a dollar bill recognizer might insist that detector make as few errors as
possible, subject to the constraint that it classifiy counterfeit bills as valid no more than
one time in a million.

Energy Detectors for Deciding Signal/No Signal:  For the "signal/no signal"
task, the detector must decide whether  r(t)  contains signal AND noise, i.e.  r(t) = v(t)
+ n(t),  or just noise, i.e.  r(t) = n(t).  Since it is natural to expect that  r(t)  will have
larger energy in the former case than in the latter, it is natural to choose the energy
E(r)  of  r(t)  as the decision statistic.  (One would normally measure the energy of  r(t)
over the support interval of  v(t).)  The decision maker would then decide that  v(t)  is
present if the energy is sufficiently large, and would decide that  v(t)  is not present
otherwise.  To make such a decision, one needs to specify a threshold, denoted τ, and
the decision rule becomes

v(t)  is present if  E(r) ≥ τ,  and  v(t)  is not present if  E(r) < τ .

How to choose the threshold?  The first thing to note that is that the noise signal  n(t)  is
usually random.  That is, it is not known in advance, and it is different every time we
measure it.  In particular, the energy of the noise will vary from decision to decision.
However, based on past experience, it is usually possible to estimate the average value
of the noise energy, which we denote  

–
 E(n).  Then we can say that when  v(t)  is not

present, the signal  r(t) = n(t)  has a random energy value, with average  
–
 E(n).  On the

other hand, when the signal  v(t)  is present, the energy of  r(t),  though still random
tends to be larger.  Specifically, it ordinarily has average energy equal14 to  E(v) +–
 E(n).  In summary, when the signal  v(t)  is present, the average energy of  r(t)  is
E(v) + 

–
 E(n),  and when  v(t)  is not present, the average energy of  r(t)  is  

–
 E(n).  It is

natural then to choose a threshold that lies half way between these two average energy
values.  That is, we choose

τ  =  
1
2 (E(v) + 

–
 E(n)) + 

1
2 

–
 E(n)  =  

1
2 E(v) + 

–
 E(n) .

Energy detectors can also be used for the "which signal" task, provided the signals
v1(t),  v2(t),  ... , vM(t)  have sufficiently different energies -- so different that the
differences will not be obscured by the noise.  In this case, the typical decision maker
strategy is to compare  E(r)  to the average energies  E(v1)+

–
 E(n),  E(v2)+

–
 E(n), ...,

E(vM)+
–
 E(n)  that one expects if the various  vi(t)'s  were present.  The decision maker

then decides in favor of the signal  vi(t)  such that  E(vi)+
–
 E(n)  is closest to  E(r).

Correlating Detectors for the "Which Signal Task":  For the "which signal"
task, an alternate and usually more effective method of detection (than energy detec-
tion) is to directly compare  r(t)  to each of the signals  v1(t), v2(t), ..., vM (t).

14This is because  v(t)  and  n(t)  are usually uncorrelated.
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Accordingly, we need a measure of similarity, and we will choose correlation.  Specifi-
cally, the correlation between two continuous-time signals  x(t)  and  y(t)  is defined to
be

C(x,y)  =  ∫
t1

t2
 x(t) y(t) dt ,

where  (t1,t2)  is the time interval of interest.  Similarly, the correlation between two
discrete-time signals  x[n]  and  y[n]  is defined to be

C(x,y)  =  ∑
n1

n2
 x[n] y[n] .

For brevity, we will continue the discussion presuming continuous-time signals.  To see
why correlation is a good measure of similarity to use in detection, consider the signal
pairs shown below, in which a signal  r(t)  is compared to the three possibilities  v1(t),
v2(t)  and  v3(t).  To aid the comparisons,  r(t)  is plotted above each signal.  One can
see that  r(t)  and  v1(t)  are similar in that, roughly speaking, where one is positive, the
other is as well; where one is negative the other is as well.  Moreover,  r(t)  roughly
follows the shape of  v1(t).  On the other hand, the signals  r(t)  and  v2(t)  are rather
dissimilar.  Where  v2(t) is positive,  r(t)  is sometimes negative; where  v2(t)  is
increasing,  r(t)  is sometimes decreasing.  Finally, r(t)  and  v3(t)  are very dissimilar.
Indeed,  r(t)  is very much like the negative of  v3(t).  If one were to make a decision
about which of the three signals  v1(t), v2(t), v3(t)  was contained in  r(t)  based on
visually comparing  r(t)  to the these signals, one would clearly choose  v1(t).  And
indeed this is correct, because  r(t)  was generated by adding noise to  v1(t).

Let us now consider how the same decision could be based on correlation.  To do so,
let's examine the value of correlation for each pair of signals.  The product of each pair
of signals is shown below the pair.  Correlation is the integral of the product, i.e. the
area under the plot of the product signal.  For the first pair, the product is almost
entirely positive, and the correlation is large.  For the second pair, the product is
approximately half negative and half positive, and the correlation is small because the
positive and negative areas of the product tend to cancel each other.  Finally, for the
third pair, the product is mostly negative, and the correlation gives a large negative
value.
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   C(r,v1) = 16.7     C(r,v2) = 0.82       C(r,v3) = -16.7
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If a detection system had to decide from the three correlation values which of the three
signals  v1(t), v2(t), v3(t)  was contained in  r(t),  clearly it should choose the one
corresponding to the largest correlation, namely,  v1(t).

Though correlation would work well in the example above, consider what would have
happened if, for example,  v2(t)  were 100 times larger.  In this case, it is easy to see
that the correlation  C(r,v2) = 82,  rather than  0.82.  Thus even though  v2  has a very
different shape than  r(t),  a decision based solely on the size of the correlation would
make the wrong decision.  We can remedy this potential shortcoming by normalizing
correlation.  That is, it is better to make a decision based on normalized correlation,
which is defined by

CN(x,y)   =   
C(x,y)

√E(x)√E(y)
   =   

1
√E(x)√E(y)

  ∫
t1

t2
 x(t) y(t) dt

where  E(x)  and  E(y)  are the energies over the interval  (t1,t2)  of  x  and  y, respec-
tively.  If the energies of the  vi(t)'s  are the same, then signal  vi(t)  that has the largest
correlation  C(r,vi)  also has the largest normalized correlation  CN(r,vi).   However,
when the  vi(t)'s  have different energies, the normalized correlation accounts properly
for such and permits the decision to be properly based.

Having discussed correlation, we can now completely describe a typical correlating
detector.  Suppose we must decide which of the signals  v1(t), v2(t), ..., vM(t)  is
contained in  r(t).  The decision statistic calculator computes and outputs  CN(r,v1),
CN(r,v2), ..., CN(r,vM).  The decision maker makes finds the largest of these, and
outputs the corresponding decision.

Comparison of Energy and Correlating Detectors:  There are some situations
where energy detectors cannot be used and some where correlating detectors cannot be
used.  For example, energy detectors cannot be used for the "which signal" problem
when the signals have the same energy, which is often the case in digital communi-
cations.  On the other hand, correlating detectors cannot be used when the precise shape
of the signals is not known.  For example, in Marconi's original transatlantic radio
transmission, the transmitted signal was generated by a spark, with no known signal
shape.  Clearly, a correlating detector was out of the question!

In situations where both energy and correlating detectors can be used, it is usually
found that the latter performs significantly better than the former, i.e. it makes fewer
errors.

C. Signal Digitization for Data Storage and Transmission

In today's world where signal processing is increasingly done by general or special
purpose computers, it is necessary to convert signals into digital form.  Moreover sig-
nal storage and transmission are increasingly done in digital fashion.  Again, this
necessitates conversion to digital form.  Such conversion involves two steps:  (1)
sampling, and  (2) representing each sample as a binary number.  Both of these steps
generally involve losses, i.e. changes to the signal.  Sampling is the topic of Chapter 4
and will be extensively discussed there.  Converting to bits will be the subject of one of
our lab assignments.  However, let us describe here the most elementary method of
converting samples to bits, called uniform scalar quantization.

With uniform scalar quantization, if we wish to represent a sample value  x[n]  with  b
bits, then as illustrated below for the case that  b = 3, we divide the range of sample
values,  (xmin,xmax)  into  2b  nonoverlapping bins of width  ∆ = (xmax-xmin)/2b.  These
bins are indexed from left to right by the integers  0, 1, 2, ..., 2b-1, and each of these
integers is represented as a  b-bit  binary number.  For example, if  b = 3, then  5 ⇔
101.  Let  xi = xmin + ∆/2 + i∆  denote the center of the ith bin.  Now, if the sample
x[n]  to be quantized lies in the ith bin, then we represent it by the binary representation
of  i,  and we consider  x[n]  to have been quantized to the value  ci.  Note that when
using this binary number in a processing task, we consider it to represent the value  ci,
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and must act accordingly.  Actually, if the processing is done in a general purpose
computer, we might convert  i  to binary using one of the standard conventions that are
convenient for doing arithmetic, such as "two's complement".

x in xmax

0 1 2 3 4 5 6 7

c0 c1 c c3 c4 c5 c6 c7

000 001 10 011 100 101 10 111
bin index:

binary representation:

∆

A system that does both sampling and uniform scalar quantization is called an analog-
to-digital converter.

There are more sophisticated methods for converting samples to bits that produce many
fewer bits.  These are generally called data compression methods.  Examples include
JPEG image compression, MP3 audio compression, and CELP speech compression,
which is the system used in digital cellular telephones, digital answering machines, and
the like.  A simplified version of a JPEG like image compression system is included in
one of the lab assignments.  Generally speaking, data compression is done in order to
reduce the amount of memory needed to store a signal or the amount of time needed to
transmit a signal.  When the signal actually needs to be processed or played, the
compressed representation must ordinarily be changed back into a representation like
the one produced by a uniform scalar quantizer.  This is called decompression.

Concluding Remarks

Having discussed several basic signal processing tasks, it should be mentioned that from
now on, we will not focus on them in future lectures.  Instead we will focus on
developing tools and techniques that enable systems to perform these tasks well.  In
particular, we will discuss sampling (Chapter 4 of our text), spectra (Chapter 3 and
handouts) and linear filters (Chapters 5-8).  Although these signal processing tasks will
not be the focus of the lectures, from time to time we will discuss how the techniques
being developed in lecture apply to them.  On the other hand, these basic signal
processing tasks will be the focus of a number of the lab assignments in this course.


