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Lectures on Sampling

We have already discussed the basic idea of sampling a continuous-time signal to obtain a
discrete-time signal.  Here's a reminder:

Sampling:

Sampling a continuous-time signal  x(t)  produces a discrete-time signal

x[n]  =  x(nTs)

where  Ts = sampling interval,  fs = 1/Ts  = sampling rate or sampling frequency

(It might seem more realistic to describe sampling as  x[n] = x(nTs+τ),  where τ   is
some time "offset".  However, "time zero" is just some arbitrary reference time, so we
can ordinarily assume it is chosen so that  τ=0.)

Interpolation/reconstruction

This part of the course is mostly about about the reverse operation, namely, converting
a discrete-time signal to a continuous-time signal.  This is called "interpolation" or
"reconstruction" or "discrete-time to continuous-time conversion".

We begin with a discussion of engineering tasks that require sampling, and see that some,
but not all, of them involve converting discrete-time signals to continuous-time.  We will
then focus mainly on one of these tasks.
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Sampling is the first step in analog-to-digital conversion

Analog-to-digital conversion:

Three components:  sampler, quantizer and binary encoder

continuous-
time signal bits

sampler quantizer
(t) x[n] b[m]

discrete-
time signal

analog-to-digital converter

x[n]

quantized
discrete-

time signal
binary 

encoder
^

Analog to digital conversion is abbreviated A/D conversion or ADC.  It is also called
"digitization".

Quantization:

The "quantizer" takes the input sample  x[n]  and "rounds" it to the nearest of a finite
set of "quantization levels".

The quantization levels are ordinarily of the form

a,  a+∆,  a+2∆,  ...,  a+(M-1)∆

where  M  is the number of levels,  a  is the first level,  and  ∆  is the "level spacing".

Example:  M = 8,  a = 0, ∆ = 0.1

-.35 -.05 .05 .35

∆

x

-.35 -.05 .05

∆

x

Binary encoding:

The "binary encoder" assigns a distinct binary sequence, called a codeword, to each
quantization level.

If  M = 2
m
 ,  then the codewords have  m  bits.  Such a quanitzer is often said to be an

"m-bit quantizer" or that this quantizer "encodes with m-bits per sample".

Example continued:  m = 3

-.35 -.05 .05 .35

x
000 001 010 011 100 101 110 111

Example:  A continuous-time signal  x(t), its samples  x[n], the quantized samples  x̂[n],
and the bits produced by the encoder  b[m].

to be added
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Tasks requiring analog-to-digital conversion:

A.  Digitization for digital storage/transmission

e.g. for speech, audio, images, video, ...
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The goals are to get as good a reconstructed continuous-time signal as possible, using
as few bits/second as possible.

Example continued:  The interpolated output of the digital-to-analog converter  x̂(t).

B.  Signal recovery (noise reduction)

e.g.  for radio signal recovery,  noisy audio signals, ...
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bits
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The goal is to have the reconstructed signal  ŝ(t)  be as as similar as possible to  s(t).

C.  Signal detection

e.g.  for radar, sonar, dollar change machines,

analog-to- 
digital 

converter

continuous-
time signal

x(t)=s(t)+n(t)

bits

b[m]
decision 
about s(t)digital

processor

The goal is to make decisions about s(t),  such as a "signal present" or "signal not
present decision, that are as reliable as possible.  For this task, no discrete-time to
continuous-time conversion is needed.

D.  Other

Many other systems use sampling and/or ADC, for example, digital control systems,
and MRI and other digital imaging systems.
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Discrete-Time to Continuous-Time Conversion, aka Interpolation or
Reconstruction

The discussion that follows will primarily address Task A, digitization for digital
storage and/or transmission.  The main issue is how to convert a discrete-time signal
into a continuous-time signal.  However, the discussion also has relevance to the other
tasks, as will be discussed later.  Note that several of our lab assignments involve Task
C, signal detection.  With task B in mind, later in the course we will spend
considerable time (Chapters 5-8) developing "digital filters".

Two simple interpolators:

a.  zero-order hold  (Section 4.4.3)

example

b.  linear interpolation  (Section 4.4.4)

example

Interpolation with pulses (Section 4.4.2):

~
 x(t) = ∑

n=-∞

∞
 x[n] p(t-nTs),

where  p(t)  is some basic interpolation pulse.

Examples:

i.  zero-order hold is the special case

p(t) = 
 

 1, -Ts/2≤t≤Ts/2

0, otherise

ii.  linear interpolation is the special case

p(t) = 
 

 1-|t|/Ts, -Ts≤t≤Ts

0, otherise

iii.  parabolic interpolation  (Section 4.4.5)

p(t) = ...  see Figure 4.17, p. 103

iv.  Other  p's  are possible and useful.

Other interpolators:

Given a set of samples there are infinitely many ways to interpolate.  That is, there
are infinitely many ways to draw a continuous-time signal that passes through the
samples.  All of these may be considered to be interpolations, even if they are not
pulse-type interpolations.  For example, a set of samples and three rather arbitrary
interpolations are shown below

t
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Quality of the interpolated signal

Though we won't emphasize this much, one can use MSE to measure the quality of
the interpolated signal, i.e.

MSE = ∫
t1

t2
 (x(t)-

~
 x(t))

2
  dt .

Questions:

• Among all possible interpolators, what is best?

• Among all possible pulse-type interpolators, what is best?

• For a given type of interpolation how does quality depend on the sampling
frequency fs?

• Is there a tradeoff between quality and complexity/cost of interpolators?

Basic guiding principles:

Given a discrete-time signal  s[n], a good interpolation method should produce a
continuous-time signal  s(t)  such that

(a) s(t)  has  s[n]  as its samples, i.e. s(nTs) = s[n],  for each  n

(b) s(t)  is as smooth as possible.

The motivation for (a) is self-evident.  The motivation for (b) is a kind of Occam's
razor principle, i.e. that the simplest explanation for some phenomenon is the best
explanation.  Here we assert that the smoothest and least fluctuating interpolation is
the best interpolation, because it is in some sense the simplest.  For example, in the
previous figure, one can easily identify the smoothest and least fluctuating interpo-
lation of the three shown.  More generally, we look for interpolations whose spec-
trum is concentrated at the lowest possible frequencies, because interpolations with
larger high frequency components will fluctuate more and be less smooth.  With
smooth interpolations in mind, parabolic interpolation is better than linear, which in
turn is better than zero-order hold.

The effect of increasing the sampling rate  fs:

• With zero-order hold, linear interpolation, parabolic interpolation and most
pulse-type interpolations, it should be intuitive that  ~x(t)  becomes a better
approximation to  x(t)  as  fs  increases.  For example,

MSE→ 0  as  fs→∞

On the other hand, we'd prefer to be able to use as small a sampling rate as
possible, because a smaller sampling rate generates fewer samples for us to have
to save and/or process.  As a result, at some point MSE is sufficiently small and
further increases in the sampling rate are not worthwhile, i.e. there is a point of
diminishing returns.

• Surprisingly, however, there is one particular choice of  p(t)  that creates perfect
interpolations.  And, surprisingly,  fs  need not grow without bound.  Instead it is
only required that  fs  be larger than twice the frequency of all spectral compo-
nents of the signal.  This remarkable result stems from the "sampling theorem".
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The Sampling Theorem (Sections 4.1.2 and 4.5)

If the sampling frequency  fs  is greater than the twice the frequency of all spectral
components of the signal  x(t),  then

x(t)  =  ∑
n=-∞

∞
 x(nTs) p*(t-nTs)

where

p*(t)  =  
sin(

π
Ts

t)
π
Ts

t

Notes:

1. This theorem shows that under appropriate conditions, the signal  x(t)  equals,
without approximation, the interpolation  ~x(t)  produced from its samples using the
pulse  p*(t).

2. Example:  Suppose  x(t) = 2 cos(2π(3)t +.1) + 2 cos(2π(5)t +.2) .  Plot the
spectrum.  The theorem shows that interpolation from the samples of  x(t)  equals
x(t)  if we choose sampling rate  fs > 10.

3. An interpolator that interpolates using  p*(t)  is called an "ideal interpolator".  This
particular pulse is often called a "sinc function" or "sinc pulse".  Notice that its
value at zero is  1,  that it has infinite support,  and that it equals zero at times  ±Ts,
±2Ts, ±3Ts, ... .  A portion of  p*(t)  is shown below.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
p(t)  for  Ts = .1

t  in  seconds

4. Example:  Illustration of the interpolation of a set of samples using the sinc pulse:

picture here

5. This is a remarkable and surprising theorem.  A complete derivation is beyond the
scope of EECS 206, but is included in EECS 306.  It requires the frequency domain
analysis of aperiodic continuous-time signals via the "continuous-time Fourier
transform".  Later we'll have just a brief discussion about its derivation. The
theorem is often called the Shannon Sampling Theorem, after UM alumnus Claude
Shannon who used the theorem in his pioneering 1948 paper, which among other
things made it widely known to engineers.  The earliest versions of the theorem go
back 1847.

6. Let  fmax  denote the highest frequency of any spectral component of the signal
x(t).  If  fmax < ∞,  then  x(t)  is said to be "bandlimited" because its bandwidth is
finite.  Moreover, we say  "x(t)  is bandlimited to frequency  fmax".
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7. The Sampling Theorem applies to bandlimited signals, for example a finite sum of
sinusoids.  It shows that such signals can be perfectly recovered from their samples.
Moreover, it indicates that the sampling frequency  fs  need not grow without
bound to obtain very good interpolations.  We need only have

fs > 2 fmax

or equivalently

fmax < 
fs
2

2fmax  is often called the "Nyquist frequency".

8. If a signal  x(t)  has  fmax = ∞,  then it is not bandlimited and the sampling theorem
does not apply.  For example, a periodic square wave is not bandlimited.  We'll
briefly discuss sampling nonbandlimited signals later.

9. The fact that the pulse  p*(t)  has infinite support can make it difficult to build a
system that implements ideal interpolation.  For example, whereas  zero-order hold
and linear interpolation use just one and two samples, respectively, when producing
the value of  

~
 x(t)  at any particular time  t,  the ideal interpolator uses an infinite

number of samples.

In practice, few systems attempt to use ideal interpolation.  Instead most use zero-
order hold, linear interpolation, or some other simple scheme.  Because of this,
they generally need to use a sampling rate that is the larger than the Nyquist rate
2fmax.  The ratio  fs/(2fmax)  is sometimes called "the oversampling ratio".

If ideal interpolation is not commonly used, what then is the value of the sampling
theorem?  Its main value is in the understanding that it provides.  For example, it
tells us that good interpolation is possible only when  fs > 2fmax.

10. It can be shown (e.g. in EECS 206) that the signal produced by the ideal
interpolator,

~
 x(t)  =  ∑

n=-∞

∞
 x(nTs) p*(t-Ts) ,

is itself bandlimited to frequency  fs/2  and that it is the only signal that is
bandlimited to frequency  fs/2  that passes through the samples.  That is, any other
interpolation of the samples has components at frequencies greater than  fs/2.  Thus,
~
 s(t)  is the "smoothest" possible interpolation of the samples.

This is an important property.

11.  What's so special about  2fmax?  What goes wrong when  fs ≤ 2fmax?

Example: Consider sampling the signal

x0(t)  =  cos( 2πf0t + φ)

with sampling rate  fs  such that  f0 = 1.1 fs.  Notice that

fs < f0 = fmax < 2fmax.

Draw the signal, its samples, and the linear interpolation of the samples.
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Notice that the interpolation looks like a sinusoid with a much lower frequency.
Let us see what is happening.  The sampled signal is

x0[n]  =  cos( 2πf0nTs + φ )

     =  cos( 2π(1.1)fsnTs + φ )

     =  cos( 2π(1.1) n + φ )  since  fs = 1/Ts

     =  cos( 2π (.1) n + φ )  
since frequency  2π(.1) and
frequency 2π(1.1) are equivalent

Now, observe that the samples of  x0(t)  are exactly the same as the samples
from the sinusoid  x1(t) = cos( 2πf1t+φ)  with the much lower frequency  f1 =
0.1 fs:

x1[n]  =  cos( 2πf1nTs + φ )

     =  cos( 2π(.1)fsnTs + φ )

     =  cos( 2π(.1) n + φ )  since  fs = 1/Ts

Thus we see that sampling  x0(t)  and  x1(t)  at the given sampling frequency
produces  x0[n]  and  x1[n]  that are identical because they are sinusoids with
equivalent frequencies.

Recalling the basic principles of interpolation, we recognize that any reasonable
interpolator will attempt to produce the sinusoid  x1(t)  because it fluctuates less.
(Indeed, the sampling theorem indicates that the ideal interpolator would
produce  x1(t)  exactly, because  fs  is more than twice as large as the frequency
of all of its components.)  Thus, we have the unpleasant situation that one signal
x0(t)  is the input to the sampler, but a rather different signal  x1(t)  comes out
of the interpolator.

Example:   Consider sampling the signal

x0(t)  =  cos( 2πf0t + φ)

with sampling rate  fs  such that  f0 = 0.6 fs.  Notice that

fs < 2f0 = 2fmax .

Draw the signal, its samples, and the linear interpolation of the samples.

Notice that the interpolation looks like a sinusoid with a lower frequency.  Let us
see what is happening.  The sampled signal is

x0[n]  =  cos( 2πf0nTs + φ )

     =  cos( 2π(.6)fsnTs + φ )

     =  cos( 2π(.6) n + φ )  since  fs = 1/Ts

Now, observe that the samples of  x0(t)  are exactly the same as the samples
from the sinusoid  x1(t) = cos( 2πf1t-φ)  with the lower frequency  f1 = 0.4 fs:

x1[n]  =  cos( 2πf1nTs - φ )
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     =  cos( 2π(.4)fsnTs - φ )

     =  cos( 2π(.4) n - φ )  since  fs = 1/Ts

 =  cos( -2π(.4) n + φ ) since  cos(-θ) = cos(θ)

 =  cos( 2π(.6) n + φ )
since frequency -2π(.4) and
frequency 2π(.6) are equivalent

We see that sampling  x0(t)  and  x1(t)  produces  x0[n]  and  x1[n]  that are
identical because they are sinusoids with equivalent frequencies.  And as in the
previous example, any reasonable interpolator will produce, at least
approximately, the sinusoid  x1(t)  because it has the lower frequency.  (And
ideal sampling would produce  x1(t)  exactly because  fs  is more than twice as
large as its frequency.)

12.  Two continuous-time signals that have the same samples, such as in the previous
two examples, are said to be "aliases" of each other.  "Aliasing" is said to occur
when, as in the previous example, a continuous-time signal  x0(t)  is sampled, but a
very different continuous-time signal  x1(t)  is produced, at least approximately, by
the interpolator.  By "very" different we mean that the difference is not simply due
to a crude interpolation, like zero-order hold, but is due to the fact that the
interpolator has produced a signal that is bandlimited to a lower frequency than the
original signal.  It is also common to say that  x0(t)  has "aliased" to  x1(t).

13.  Examples of sinusoids and complex exponentials that are aliases of each other:

(a) x0(t) = cos (2π f0t + φ )    and  x1(t) = cos (2π (f0+mfs)t +φ)

where  m  is any positive or negative integer.

(b) x0(t) = e
j(2πf0t+φ)

 
  and  x1(t) = e

j(2π(f0+mfs)t+φ)

 

where  m  is any positive or negative integer.

(c) x0(t) = cos (2π f0t + φ )    and  x1(t) = cos (2π (mfs - f0)t - φ)

where  m  is any positive or negative integer.  In this case, it is sometimes said
that the frequencies of  x0(t)  and  x1(t)  are related by "folding".

14.  From the above property we may deduce that any sinusoid  x0(t)  with frequency
greater than  fs/2  has an alias  x1(t)  with frequency less than  fs/2.

The following diagram illustrates the higher frequencies that alias to a given
frequency less than  fs/2.  It also indicates whether the aliasing results in the same
phase or the negative of the phase.

fsfs
1

2
fs

3

2
fs

5

2
2 fs 3 fs

+φ +φ-φ -φ -φ
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15.  Let us return to the question of what goes wrong when  fs < 2fmax  or,
equivalently, when  fmax < fs/2.

We begin by considering sinusoids.  From the previous property, any sinusoid
x0(t)  with frequency  f0 = fmax > fs/2  has an alias with frequency  f1 = fmax < fs/2,
which any reasonable interpolator will produce, at least approximately.  This shows
clearly what goes wrong.

Next, consider an arbitrary periodic signal  x(t).  By the Fourier series theorem,
x(t)  is a sum of sinusoidal components.  We also note that sampling is a linear
operation.  Thus, the samples of the periodic signal are simply the sum of the sam-
ples of its sinusoidal components.  If the signal has  fmax > fs/2,  then at least one
sinusoidal component will suffer aliasing, and consequently the original signal  x(t)
suffers aliasing.  In particular, the interpolator will produce, at least approximately,
the sum of the aliased sinusoids, rather than the sum of the original sinusoids.

In summary, if a signal has  fmax > fs/2,  then the interpolator produces an alias
with  fmax < fs/2.

16.  Derivation of the sampling theorem:  Using the Fourier series theorem as in the
previous note, one can argue that if a periodic signal  x(t)  has  fmax < fs/2  (i.e. all
spectral components have frequencies less than  fs/2),  then no other periodic signal
with  fmax < fs/2  has the same samples.  This indicates that when  fmax < fs/2,  it
should be possible to reconstruct the signal from its samples.  However, to show
that this can be done with the sinc pulse based interpolator requires methods beyond
our scope.

17.  What happens if we sample exactly at the Nyquist rate, i.e. with  fs = 2fmax.

Aliasing might or might not occur.  For example consider taking two samples per
period from a sinusoid, which means  fs  is exactly twice the frequency of the
sinusoid.  These samples can be taken at the zero crossings, in which case the
sinusoid aliases to the all zero signal.  Or they can be taken at the peaks, in which
case aliasing does not occur.  Or they can be taken at other times, in which case the
sinusoid has an alias at the same frequency but a different phase.

Illustrate this.

18.  What happens if a signal is bandlimited and we sample at too low a frequency?

In the case of a periodic signal and ideal interpolation, sampling and interpolation
results properly reconstructs all spectral components at frequencies less than  fs/2,
but it aliases all spectral components at frequencies greater than  fs/2  to frequencies
less than  fs/2.

Illustrate this.

19.  How to sample a signal that is not bandlimited?

There's no perfect way.  One must pick a sampling rate  fs.  All spectral compo-
nents at frequencies above  fs/2  will alias to frequencies below  fs/2.  If possible,
one chooses  fs  so large that the frequency components above  fs/2  are very small.

Illustrate this:

If possible, one precedes the sampler with a "continuous-time filter" that eliminates
all frequency components above  fs/2.  This reduces the interpolation MSE by
approximately a factor of two.  Continuous-time filters are discussed in EECS 306.
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20.  Sampling and interpolation for the signal recovery task.

In the signal recovery task, the signal  x(t) = s(t) + n(t)  is sampled with the goal of
eventually producing an approximation  ŝ(t)  to the desired part of the signal,
namely,  s(t).  Though we are not trying to reconstruct  x(t),  it makes sense to
sample it at a rate greater than  fmax/2  for  x(t),  because then the samples contain
all the information in  x(t).  (From the samples one could reconstruct  x(t).)  It is
not essential that one sample at a frequency significantly greater than  fmax/2,  but
in some cases, this may simplify the processing that must be performed.

The digital-to-analog converter, which is the last step of the signal recovery system,
is not actually reconstructing a signal from the samples of the signal, rather it is
constructing a signal  ŝ(t)  from samples  ŝ[k]  created by a digital processor.  The
interpolation used by the digital-to-analog converter could be zero-order hold,
linear interpolation, ideal interpolation, or some other form of interpolation.

If ideal interpolation is chosen, then  ŝ(t)  is determined by

ŝ(t)  =  ∑
n=-∞

∞
 s[n] p*(t-nTs)

There is also, sometimes, a shortcut to finding  ŝ(t).  If  ŝ[n]  happens to be a
sinusoid, e.g.

ŝ[n] = A cos(ω̂n+φ),   0 ≤ ω̂ ≤ π

then we know that the ideal interpolator will produce the unique continuous-time
signal that is bandlimited to frequency  fs/2  and has  ŝ[n]  as its samples.  What is
this signal?  It is easy to see by inspection that following signal has these two
properties:

A cos(ω̂fst+φ)

Thus it must be the output  ŝ(t)  of the ideal interpolator.

This method can also be applied to a signal that is a sum of sinusoids, by applying it
separately to each sinusoidal component.  It also applies to arbitrary periodic
signals, because by the DFT Theorem, any periodic signal is the sum of sinusoids.

21.  Sampling for signal detection

In the signal detection problem, we sample the signal  x(t) = s(t) + n(t)  with the
goal of a making a decision about  s(t)  based on the samples.  The system does not
output a continuous-time signal.  As in the signal recovery problem, it makes sense
to sample  x(t)  at a rate greater than  fmax/2,  because in this case, the samples
contain all the information that was originally in  x(t).  Sometimes sampling at a
significantly higher rate simplifies the processing that must be done.


