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3.4.5 Fourier Series Derivation
The analysis formula1 for the Fourier Series coefficients (3.4.2) is based on a simple property of the complex
exponential signal: the integral of a complex exponential over one period is zero. In equation form:∫ T0

0
e j(2π/T0)t dt = 0 (3.4.7)

where T0 is the period of the complex exponential whose frequency is ω0 = 2π/T0. This fact is obvious if we
use Euler’s formula to separate the integral into its real and imaginary parts which integrate cosine and sine
over one period:∫ T0

0
e j(2π/T0)t dt =

∫ T0

0
cos((2π/T0)t)dt+ j

∫ T0

0
sin((2π/T0)t)dt = 0+ j0

The vowel signal and the square-wave are both examples that suggest the idea of approximating a periodic
signal with a sum of complex exponentials.

x(t) ≈
N∑

k=−N

Cke j(2πk/T0)t

Where 2N+ 1 is the number of frequency components used. In fact, we might hope that with enough complex
exponentials we could make the approximation perfect. This leads to the notion of an infinite series expansion
for a periodic signal:

x(t) =
∞∑

k=−∞
Cke j(2πk/T0)t (3.4.8)

A key ingredient in the series expansion is the form of the complex exponentials, which all have the same
period as the signal, T0. If we define vk(t) to be the complex exponential of frequency ωk = 2πk/T0, then

vk(t) = e j(2πk/T0)t (3.4.9)

Even though the minimum length period of vk(t) is smaller than T0, we can prove that vk(t) does repeat with
a period of T0:

=⇒ vk(t+ T0) = e j(2πk/T0)(t+ T0)

= e j(2πk/T0)t e j(2πk/T0)T0

= e j(2πk/T0)t e j2πk

= e j(2πk/T0)t = vk(t)

because e j2πk = 1 for any integer k (positive or negative).
The only step in the derivation of the Fourier Series is that of going from the series expansion (3.4.8)

to the analysis integral (3.4.2). To do this, we generalize the zero-integral property (3.4.7) of the complex
exponential. Here is the form that we need:∫ T0

0
vk(t)v

∗
`(t)dt =

{
0 if k 6= `
T0 if k = ` (3.4.10)

1The page numbering and section numbering of this insert corresponds to Chapter 3 of DSP First.
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where the * in v∗`(t) denotes the conjugate. Proving this fact is straightforward:∫ T0

0
vk(t)v

∗
`(t)dt =

∫ T0

0
e j(2πk/T0)te− j(2π`/T0)t dt

=
∫ T0

0
e j(2π(k− `)/T0)t dt

There are two cases for the last integral: when k = ` the exponent becomes zero, so the integral is∫ T0

0
e j(2π(k− `)/T0)t dt =

∫ T0

0
e j0t dt =

∫ T0

0
1 dt = T0

Otherwise, when k 6= ` the exponent is non-zero and we can invoke Euler’s formula to see that we are inte-
grating cosine and sine over an integral number of cycles:∫ T0

0
e j(2π(k− `)/T0)t dt =

∫ T0

0
e j(2πm/T0)t dt

=
∫ T0

0
cos((2πm/T0)t)dt+ j

∫ T0

0
sin((2πm/T0)t)dt = 0+ j0

where m = k− `. Equation (3.4.10) is called the orthogonality property of complex exponentials. It is often
quite helpful in solving problems that involve integrals with complex exponentials.

Now we are ready for the last step in the “proof.” If we assume that (3.4.8) is valid, then we can multiply
both sides by v∗` (t) and integrate over the period T0.

x(t) =
∞∑

k=−∞
Cke j(2πk/T0)t

=⇒
∫ T0

0
x(t)e− j(2π`/T0)t dt =

∫ T0

0

∞∑
k=−∞

Cke j(2πk/T0)te− j(2π`/T0)t dt

=
∞∑

k=−∞
Ck

∫ T0

0
e j(2π(k− `)/T0)t dt CRUCIAL STEP !!

= C`T0

The last step relies on the “orthogonality property” stated in (3.4.10), so that the only non-zero case for the
integral occurs when k = `.

In the crucial step, the order of the infinite summation and the integration have been swapped. This is a
delicate manipulation that depends on convergence properties of the infinite series expansion. It was also a
topic of research that occupied mathematicians for a good part of the early 19th century. For our purposes, we
assume that x(t) is either smooth or has a finite number of discontinuities so that the swap is permissible.

The final analysis formula is obtained by writing C` on one side of the equation:

C` = 1
T0

∫ T0

0
x(t)e− j(2π`/T0)t dt

Since ` is just a “dummy” index, we can replace ` with k. In addition, we would like to compare the Fourier
Series coefficients Ck to the complex amplitudes Xk = Ake jφk in the spectrum, but we notice that there is a
factor of two that must be used:

X0 = C0

Xk = 2Ck for k 6= 0
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This factor of 2 comes from our definition of Xk as Xk = Ake jφk in (3.4.1) using the amplitude of the cosine
signal directly. On the other hand, when the positive and negative frequency terms in the Fourier Series are
combined we add a complex number and its conjugate, so we get twice the real part.

Convergence

The infinite sum in (3.4.8) actually means that there is a limiting process that gives equality between the right-
hand and lefthand sides of (3.4.8). There are two possibilities:

1. The usual way to interpret the limit is pointwise

x(t) = lim
N→∞

N∑
k=−N

Cke j(2πk/T0)t (3.4.11)

but this presents a difficulty when x(t) has a point of discontinuity, as in the square wave example.

2. A better way to define the limiting process is to use what is called the squared error.

lim
N→∞

∫ T0

0

∣∣∣∣∣x(t)−
N∑

k=−N

Cke j(2πk/T0)t
∣∣∣∣∣
2

→ 0 (3.4.12)

In this definition the error is the difference between the lefthand and righthand sides of (3.4.8), and it
becomes small because the total error energy (over one period) goes to zero. This interpretation depends
on the following definition of the average energy of s(t) over one period:

E2
s =

1
T0

∫ T0

0
|s(t)|2 dt

The integrand in (3.4.12) should be called the approximation error when a finite number of Fourier Se-
ries terms are used to represent x(t). If we define xN (t) to be the signal formed by a finite sum of com-
plex exponentials:

xN (t) =
N∑

k=−N

Cke j(2πk/T0)t

then the error signal is eN (t) = x(t)− xN (t).

The best example of convergence under these two interpretations is given by the square wave which has
a point of discontinuity. Figure 3.13 allows us to compare x(t) and xN (t) for several values of N. As N
increases, the signal xN (t) has higher frequency oscillations, but it also gets closer to x(t) over most of
the time interval. On the other hand, when we focus our attention on the regions near the discontinuous
edges (t = 0,0.02,0.04,0.06, . . .), we notice that the size of the last oscillation is not decreasing. This
“overshoot” is called the Gibbs’ Phenomenon, after J. Gibbs who first proved that the size of the over-
shoot does not decrease with N, and in fact is always equal to about 9% of the size of the discontinuity in
the square wave. Also we notice that xN (t) is always equal to 0 at the edges, but the definition of x(t)
is ambiguous at those points (it should be either +1 or −1). These two observations are the specific
reasons why pointwise convergence is not obtained for the Fourier Series. However, we can notice in
Fig. 3.13 that the overshoot is getting narrower even as its maximum amplitude stays the same. Thus the
energy in the overshoot is decreasing—in other words, there is convergence according to the squared
error measure.


