Summary of Filter Input-Output Relationships

input signal description	filter description	input-output relationship
arbitrary signal x[n] sequence of samples formula sum of impulses	impulse response sequence h[n] (FIR,IIR)	convolution: $y[n] = x[n]*h[n]$
	FIR filter coef's $\{b_k\}$	FIR difference equation
arbitrary suddenly applied signal x[n]	IIR filter coef's $\{a_k\}, \{b_k\}$	IIR difference equation with initial rest condition
complex exponential e ^j on		$e^{j\hat{\omega}n} \to H(\hat{\omega}) e^{j\hat{\omega}n}$
sinusoid cos(ŵn+φ)	frequency response function $H(\hat{\omega})$ (FIR,IIR)	$\cos(\hat{\omega}n + \phi) \rightarrow H(\hat{\omega}) \cos(\hat{\omega}n + \phi + \arg(H(\hat{\omega})))$
sum of expon'ls & sinusoids		$sum \rightarrow sum$
periodic signal N point DFT: X[k] (sum of harmonic exponentials)		periodic in \rightarrow periodic out $Y[k]=X[k]H(\frac{2\pi}{N})$
suddenly applied sinusoidal signal	FIR: $h[n]$, $H(\hat{\omega})$	hybrid approach: convol'n for n=0 to M-1, FRF for n≥M
abitrary suddenly applied signal $x[n]$, described by z-transform $X(z)$	system function H(z) (FIR,IIR)	Y(z) = X(z) H(z)
	poles, zeros and gain of H(z) (FIR,IIR)	indicates: $ H(\hat{\omega}) $

Notes:

- 1. IIR filters need to be stable in order that
 - frequency response exists
 - convolution of impulse response with any input signal x[n] with support $-\infty$ to ∞ is well defined and finite
 - the response to a sinusoidal input with support $-\infty$ to ∞ is a sinusoid.
 - the response to a suddenly applied sinusoidal input is a sinusoid plus a decaying transient signal
- 2. an IIR filter is stable if all poles are located inside the unit circle, or equivalently, if $\sum_{n=0}^{\infty} |h[n]| < \infty$ (we have not discussed this condition)