EECS 206, Winter 2002 FINAL EXAM Mond. Apr. 22, 2002 - 4:00-6:00pm

PRINT NAME:	Lect. Sect.	Lab Sect.
	Leci. Seci.	Lab Sect.

Section 1: 126 students; Section 2: 84 students

Rooms: 1001 EECS (48 students: Labs 6(36) and 9 (12)) [room cap. 110], 1005 Dow (30 students: Lab 10) [room cap. 62], 1010 Dow (36 students: Lab 11) [room cap. 69], 220 Chrysler (96 students: Labs 5(34), 7(28), and 8(34)) [room cap. 234].

Instructions:

- Print your name
- Sign the pledge below
- Closed book and notes
- Three 8 1/2 x 11 sheets of paper allowed (both sides)
- Calculators allowed
- Answer on this questionnaire
- No scratch paper allowed
- Read the questions carefully

Grading:

- Problems 1 to 7 are multiple-choice No partial credit will be given.
- In Problems 8 to 11, partial credit will be given You must show your derivations/calculations to get full credit.

PLEDGE: I have neither given nor received any aid on this exam, nor have I concealed any violations of the Honor Code.

SIGNATURE:

DO NOT TURN THIS PAGE OVER UNTIL TOLD TO DO SO! Good Luck! Stéphane Lafortune David Neuhoff

ANSWER PAGE FOR PROBLEMS 1 to 8 and Extra Credit

PROBLEM	CIRC	LE	YOU	RA	NSW]	ER	Points
1	a	ı t) C	d	e		5
2	a	ı t) C	d	e		5
3	a	ı t) C	d	e		5
4	a	ı t) C	d	e		5
5	a	ı t) C	d	e		5
6	a	ı t) C	d	e		5
7	a	ı t) c	d	e		5
Extra			a	b c	2		1

	YOUR TOTAL
Problems 1-7	/ 35
Problem 8	/ 17
Problem 9	/ 15
Problem 10	/ 16
Problem 11	/ 17
Extra Credit	/ 1
TOTAL	/100

1. (5 points)

Continuous-time signals x(t) and y(t) have E(x) = 1, E(y) = 2, and E(x+y) = 5, where $E(\cdot)$ denotes energy. The (unnormalized) correlation C(x, y) is

- (a) 0
- (b) 1
- (c) $\sqrt{2}$
- (d) 2
- (e) Not enough information is given.

2. (5 points)

A periodic signal is given by the equation

$$x(t) = 5 + 8\cos(40\pi t - \pi/5) + \sin(60\pi t)$$

The Fourier coefficients C_k of x(t) are computed for the fundamental period T_0 of x(t). Which Fourier coefficients C_k are *different* from 0?

- (a) C_0, C_4, C_6
- (b) $C_0, C_4, C_{-4}, C_6, C_{-6}$
- (c) $C_0, C_2, C_{-2}, C_3, C_{-3}$
- (d) $C_0, C_{20}, C_{-20}, C_{30}, C_{-30}$
- (e) $C_0, C_{40}, C_{-40}, C_{60}, C_{-60}$

3. (5 points)

For a certain linear, time-invariant system

$$x_1[n] = 7\cos\left(\frac{\pi}{3}n - \frac{\pi}{3}\right) \longrightarrow y_1[n] = \sqrt{3}\cos\left(\frac{\pi}{3}n\right)$$

That is, when the input signal is $x_1[n]$ shown above, the output signal is $y_1[n]$ shown above. Now, if the input to this same system is

$$x_2[n] = 4\cos\left(\frac{\pi}{3}n - \frac{2\pi}{3}\right) \;,$$

then the output is

- (a) $y_2[n] = \frac{4}{7}\sqrt{3}\cos\left(\frac{\pi}{3}n \frac{\pi}{3}\right)$ (b) $y_2[n] = \frac{4}{7}\sqrt{3}\cos\left(\frac{\pi}{3}n + \frac{\pi}{3}\right)$
- (c) $y_2[n] = \frac{4}{7}\sqrt{3}\cos\left(\frac{\pi}{3}n \frac{\pi^2}{9}\right)$ (d) $y_2[n] = \sqrt{7} \cos\left(\frac{\pi}{3}n \frac{\pi^2}{9}\right)$

(d)
$$y_2[n] = \frac{1}{4\sqrt{3}} \cos\left(\frac{\pi}{3}n + \frac{\pi}{3}\right)$$

- (e) Not enough information is given.
- **4.** (5 points)

Consider the following pole-zero plot of a System Function. At what angular frequency $(\hat{\omega})$ below is the magnitude of the corresponding Frequency Response Function largest?

- (a) 0
- (b) $\pi/3$
- (c) $\pi/2$
- (d) $3\pi/4$
- (e) π

5. (5 points)

We take the 12-point DFT of the periodic discrete-time signal x[n] and obtain the following DFT coefficients:

$$X[k] = \begin{cases} \frac{1}{2}e^{j\pi/4} & k = 3\\ 6 & k = 6\\ \frac{1}{2}e^{-j\pi/4} & k = 9\\ 0 & \text{else} \end{cases}$$

Which of the following is a possible expression for x[n], $0 \le n \le 11$?

- (a) $\cos(\frac{\pi}{2}n + \frac{\pi}{4}) + 6\cos(\pi n)$
- (b) $6 + \cos(\frac{\pi}{4}n)$
- (c) $6 + 2\cos(\frac{\pi}{2}n + \frac{\pi}{4})$
- (d) $3 + \cos(\frac{\pi}{2}n + \frac{\pi}{4}) + 3\cos(\pi n)$
- (e) None of the above.

6. (5 points)

Consider the continuous-time signal

$$\cos(2\pi(5500)t - \pi/3) - \cos(2\pi(500)t + \pi/3)$$

What is the *smallest* sampling frequency f_s (in samples per second) in the list below that does *not* result in aliasing?

- (a) 1001
- (b) 10001
- (c) 11001
- (d) 12001
- (e) 24001

7. (5 points)

A filter has impulse response

$$h[n] = \delta[n] + 2\delta[n-1] .$$

If the input to the filter is

$$x[n] = \delta[n] - 2\delta[n-2] ,$$

then the output is

(a)
$$y[n] = \delta[n] - 4\delta[n-2]$$
.
(b) $y[n] = \delta[n] + 2\delta[n-1] - 2\delta[n-2]$.
(c) $y[n] = 2\delta[n] - 2\delta[n-1] - 2\delta[n-2]$.
(d) $y[n] = 2\delta[n] + \delta[n-1] - 4\delta[n-2] - 2\delta[n-3]$.
(e) $y[n] = \delta[n] + 2\delta[n-1] - 2\delta[n-2] - 4\delta[n-3]$.

Problem 8: (17 points: 5 + 4 + 8)

The continuous-time signal

 $x(t) = 4\cos(2\pi(2)t) + 6\cos(2\pi(3)t) + 2\cos(2\pi(11)t)$

is sampled at rate $f_s = 10$ samples per second creating the discrete-time signal x[n].

- (a) Find and plot the magnitude spectrum of x(t).
- (b) Find an expression for x[n].
- (c) Find and plot the magnitude spectrum of x[n] for $\hat{\omega}$ between π and $-\pi$.

Answer for (b): x[n] =

Derivation of Answers for (a), (b), (c) and Magnitude Spectra for x(t) **and** x[n]:

[Extra space for Problem 8]

You must show your derivations/calculations to get full credit.

Problem 9: (15 points)

Consider the filter described by the difference equation

$$y[n] = 2x[n] + 2x[n-1]$$

A periodic input signal x[n] with period 4 is applied to this system, resulting in output y[n]. The 4-point DFT of y[n] is:

$$Y[0] = 0$$
 $Y[1] = \sqrt{2}e^{-j\pi/4}$ $Y[2] = 0$ $Y[3] = \sqrt{2}e^{j\pi/4}$

Find an expression for the input x[n].

Answer: x[n] =

Derivation of Answer:

You must show your derivations/calculations to get full credit.

Problem 10: (16 points: 8 + 8)

Consider the following block diagram of two systems, where

$$H1(z) = \frac{z+1}{z}$$

and "Difference Equation 2" is

$$y[n] = -0.81y[n-2] + 5s[n]$$

- (a) Find the System Function H(z) from input x[n] to output y[n].
- (b) Find and plot the poles and zeros of H(z).

Answer for (a): H(z) =

Answer for (b): Poles at z =

Answer for (b): Zeros at z =

Derivation of Answers for (a) and (b) and Pole-Zero Plot:

[Extra space for Problem 10]

You must show your derivations/calculations to get full credit.

Problem 11: (17 points: 5 + 12)

Consider the filter described by the difference equation

$$y[n] = -\frac{1}{3}y[n-1] + 2x[n]$$

- (a) Find an expression for the impulse response h[n] of this filter.
- (b) Find an expression for the output y[n] due to input $x[n] = \cos(\frac{\pi}{2}n)$.

Answer for (a): h[n] =

Answer for (b): y[n] =

Derivation of Answers for (a) and (b):

[Extra space for any problem]

Extra Credit: (1 point) ENTER YOUR ANSWER ON PAGE 2

Which of the following MATLAB commands might return the text "Don't ask!"?

- (a) what
- (b) why
- (c) who

THE END