Relevant lectures: 3/4, 3/6/ 3/8, 3/11

Relevant reading: Chapter 5.

Relevant items in the DSP First CD: Homework Problems: 5.18-5.29, 5.3, 5.12-5.17.

Homework submission policies: As usual.

- 1. 5.1 a, b, c, p. 152
- 2. 5.2, p. 153
 - Additional parts:
 - (d) Is the filter causal?
 - (e) Find the order of the filter.
- 3. 5.6, p. 155
- 4. 5.7, p. 155

In addition, for those systems that are not time-invariant, find an example of an input signal x[n] and a time n_0 such that the response to $x[n-n_0]$ is not the same as $y[n-n_0]$, where y[n] is the response to x[n]. Plot $x[n-n_0]$, $y[n-n_0]$ and the response of the system to $x[n-n_0]$.

- 5. 5.11, p. 156
- 6. Suppose a filter with impulse response h[n] has input signal x[n] that is periodic with period n_0 . Show that the output y[n] is periodic with period n_0 . Hint: Starting by writing down the definition of what it means for y[n] to be periodic period n_0 . Also write a formula for y[n] in terms of x[n] and h[n]. There are two such formulas, one of which will be easier to work with.
- 7. A filter has coefficients $b_0 = 2$, $b_1 = -1$, $b_2 = 1$. The input signal is the complex exponential signal $x[n] = 2 e^{j(0.3 \pi n + .1)}$.

Find the output signal y[n]. Simplify the expression for y[n] as much as possible. Hint: Can you express y[n] as a complex exponential signal in standard form? Do not use the methods of Chapter 6. Use only the methods of Chapter 5.