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I . Elementary Signal Concepts

Reading Assignment:  Chapter 1 and these notes.  It is recommended that you review these notes
every now and then throughout the term.  Some of these elementary concepts will only be
needed later in the course, and some will only be well understood after you have had more
experience with signals.

A.  Signal Definition and Signal Descriptions

Definition:

A "signal" or "waveform" is a time-varying numerical quantity.

More precisely, a signal is a function of time.  That is for each value of time  t  there is
number called the signal value at time t.

Notation:

We typically use lower case letters like  x, y, s  or subscripted letters like  x1  to represent
signals, i.e. functions of time.

Most frequently, we show time   t  as the argument of such function, as  in  x(t).

Beware of the Ever-Present Notational Ambiguity:

When you see  "x(t)"  written,  sometimes the writer intends you to think of the value of
the signal at the specific time  t,  as in  x(3.1),  and sometimes  x(t)  means the whole
signal -- that is, the writer intends you to think about the whole signal, i.e. the signal
values at all times.  When it is essential that reader think about the whole signal, writers
will sometimes write  x  or  {x(t)}  instead of  x(t).

Continuous- and Discrete-Time Signals:

If the time variable ranges over a continuum of values, we say that the signal is
continuous-time.  If the time variable ranges over a discrete set of values we say the
signal is discrete-time.

More specifically, we assume unless stated otherwise that every continuous-time signal
x(t)  has time  t  ranging over all real numbers from -∞ to +∞.  In mathematical terms we
say that the domain of the function  x  is the interval  (-∞,∞).
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Similarly, unless stated otherwise, every discrete-time signal is assumed to have time  t
ranging over the set of all integers:  {..., -2, -1, 0, 1, 2, ... }.  That is, the domain of the
function  x  is the set of all integers.  When dealing with discrete-time signals it is most
common to use one of the symbols  i, j, k, l, m, or n  to denote time rather than  t.  It is
also common to put the time variable within square brackets '[ ]',  rather than ordinary
parentheses.  For instance, the following are examples of the notation used for discrete-
time signals   x[n], y[k], z1[i].

  Signal Descriptions

Sometimes signals are described with formulas and sometimes they cannot be so
described.

Examples of continuous-time signals described with formulas:

x(t) = t
2
 ,         y(t) = 3 sin (47 t),         z(t) =  

 

 2, t<0

t2, 0≤t≤1

3sin(4t), t>1

Example of a continuous-time signal that is not describable with a formula:

0 200 400 600 800 1000 1200 1400 1600
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Food for thought:  The signal shown above is a recording of me speaking a couple of
words.  Everything I said and everything you would hear is embodied in the function
plotted above.

Examples of discrete-time signals described with formulas:

x[n] = n
2
 ,         y[n] = 3 sin (47 n),         z[n] =  

 

 2, n<0

n2, 0≤n≤10

3sin(4n), n>10

Example of a discrete-time signal that is not describable with a formula:

0 10 20 30 40 50 60 70 80
-0.2

-0.1

0

0.1

0.2

0.3

Are signals described by formulas more "real" or "authentic" than signals that are not so
describable?  What does it mean to "describe a signal with a formula"?  Over the
centuries, it has been found useful to give names to certain basic mathematical operations,
such as '+', '-', '×' '/',  x2, ln(x), ex,  |x|  etc. and certain basic functions, such as  sin(x),
cos(x), Γ(x),  etc.  To "describe a signal with a formula" is simply to say that it can be
expressed in terms of previously defined operations and formulas.  A signal that is not
describable by a formula may simply be a function waiting to be blessed with its own
name.  Or it may be a function that has not previously occurred and may never occur
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again.  Generally, we do not consider signals described by formulas to be any more real
or authentic than those that are not so describable.

Note that a formula describing a signal can be quite complex, as in

s(t) = ∑
i=1

N
 ai cos(bit + φi)

where  N,  a1,...,aN,  b1,...,bN,  φ1,..., φN  are "signal parameters",  i.e. constants or
variables that one needs to know in order to fully determine the signal.  It will be
important that you develop the skill of being able to work with complex signal formulas.
For example, when you see the summation sign Σ,  you should recognize that it is just an
abbreviation for a sum of  N  terms.  Indeed, to help you to better understand the signal
described by a summation, it is often useful to write it in its unabbreviated form, e.g.

s(t)  =  a1 cos(b1t+φ1) +  a2 cos(b2t+φ2) + ... +  aN cos(bNt+φN)

B.  Elementary Signal Characteristics1

We will primarily present the characteristics of continuous-time signals.  There is a discrete-
time version of each of these, which will be presented later.

i.  Signal Support Characteristics

These are signal characteristics related to the time axis.

Support Interval:  Roughly speaking the support interval of a signal  x(t)  is the set of
times such that the signal is not zero.   More precisely the support interval of a signal  x(t)
is the smallest interval2 of times  [t1,t2]  such that the signal is zero outside this interval.
We often abbreviate and say simply support or interval instead of support interval.
Several examples are shown below.

t

upport
nterval

t1 t2

       

t

support
interval

t

t2

t

infinite 
support
interval

  =01 t   =∞

      

n n
n

1 2support
interval

Duration:  The duration or length  if a signal  x(t)  is the length of it support interval.
Some signals have finite duration and others have infinite duration.  For example, the first
two signals above have finite duration, and the third signal has infinite duration.

 Outside of EECS 206, one will occasionally encounter situations where signals are
considered to be undefined at times outside their support interval.  However, within
EECS 206, unless explicitly stated otherwise, we assume the signal value to be  0  outside
the support interval.  Indeed, we will often define a signal simply by describing its values
in some interval, with the presumption that the signal is zero for all times outside this
innterval.  For example, if we introduce a signal as

x(t) = t2,  1 ≤ t ≤ 2 ,

then it should be understood that  x(t) = 0  for  t < 0  and  t > 2.

1You do not need to memorize all of these.  Rather you need to be aware of the existence of these characteristics, so you can look up and
apply the appropriate ones at the appropriate times.
2Intervals can be open as in (a,b), closed as in [a,b], or half-open,half-closed as in (a,b] and [a,b].  For continuous-time signals, in almost
all cases of practical interest, it is not necessary to distinguish the support interval as being of one type or the other.
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Pulses:  Signals with short duration are often called pulses.  Note that "short" is a
subjective or relative designation.

Negative times and time zero:  In some of the examples above the signal interval
included negative times.  What is the significance of negative time?  To answer this, one
must first answer the question:  What is time zero?  Basically, time zero is just some
convenient reference time.  Accordingly, a negative time simply represents a time prior to
the reference time.  For example, a radar system sends a pulse and waits to record the
return times of reflections of this pulse from distant objects.  It is usually convenient to let
"time zero" be the time at which the original pulse was transmitted.  Then  t = -1.8,
means  1.8  units of time before the reference time.

ii.  Signal Value Characteristics, aka Signal Statistics

We now consider the values a signal  x(t)  takes.

Maximum and minimum values:  If  x(t)  denotes some generic signal, then it has a
maximum value  xmax  and a minimum value  xmin.  If these are both finite, i.e. xmax < ∞
and  xmin > -∞,  then the signal is said to be bounded.

What do negative vs. positive signal values represent?  The answer depends on the
application.  As an example, when a microphone responds to a sound, there is usually a
diaphragm that moves back and forth, tracking the fluctuations in air pressure that
constitute the sound.  When the diaphragm is pushed one way, the microphone produces a
positive voltage; when pulled the other way, it produces a negative voltage.

Average value: A signal also has an average value.  Specifically, the average or mean
value of  x(t)  over the interval from  t1  to  t2  is

M(x)  =  
1

t2-t1 ∫
t1

t2
 x(t) dt .

Typically a microphone recording has average equal to zero, or very nearly so.  In
electrical systems,  M(x)  is often called the DC value,  where DC stands for direct
current.  If the interval over which the average is sought is infinite, then the average
needs to be defined as a limit.  For example, the average of the interval  [0,∞)  is

M(x)  =   
 

lim
T→∞

  
1
T ∫

0

T

 x(t) dt ,

and the average over the interval  (-∞,∞)  is

M(x)  =   
 

lim
T→∞

  
1
2T ∫

-T

T

 x(t) dt .

When a signal average is indicated but an interval is not specified, we mean the average
over the entire support of the signal.

Absolute value:  Quite often, when a signal has values that are both positive and
negative, we are interested in a measure of the signal strength apart from its positive or
negative sign.  With signal strength in mind, one can compute its magnitude or absolute
value, denoted  |x(t)|.

Squared value, a.k.a. instantaneous power:  In most physical situations, the square
of  x(t),  i.e.  x2(t),  is a more useful measure of signal strength a time  t  than magnitude,
because it is proportional to the instantaneous power in the signal  x(t)  at time t, and
because power is a quantity of fundamental importance.  For such reasons, we will
sometimes refer to  x2(t)  as the instantaneous power of  x(t)  at time  t.   However, one
must remember that the actual power is a constant times this, where the constant depends
on the specific physical situation.  For example, if  x(t)  represents the current in amperes
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flowing at time  t  through a resistor with resistance  R ohms, then the instantaneous
power absorbed by the resistor is  R x2(t)  watts.

Mean-squared value, a.k.a. average power:  Whereas  x2(t)  is an excellent measure
of signal strength at an individual time  t,  quite frequently we need an aggregate measure
of signal strength that applies to the whole signal, or to the signal over some specified
time interval.  In such cases, we will typically use the mean-squared value (MSV).
Specifically, the MSV of a signal  x(t)  over the interval  t1 to t2  is

MS(x)  =  
1

t2-t1 ∫
t1

t2
 x2(t) dt .

This is also called the average power in  x(t)  over the interval  t1 to t2.  As with the
definition of average value of  x, this definition needs to incorporate a limit when the
interval is infinite.  And when no interval is specified, the entire support interval is
intended.

As an example, mean-squared value is useful when measuring the strength of the signal
received by a radar antenna.  If it is large in an interval equal to the length of a radar
pulse, then we assume that a reflected pulse has been received during this interval, and
determine that this pulse is due to an object whose distance is the elapsed time since the
original pulse was transmitted times the speed of light.   If it is very small, then we can
assume that no reflected pulse has been received during this interval, i.e. there is no object
at the corresponding distance.

As another example, mean-squared value is used by electric utility companies to determine
how much to charge you for the electricity they have supplied.  This is because the
amount of fuel required by them to supply your electricity is proportional to the mean-
squared value of the current supplied to your home.

As a last example, we mention that mean-squared value is often used as a signal quality
measure.  For example, suppose  x(t)  is the signal coming from the leftmost of two
microphones that are recording an orchestral concert, and suppose  y(t)  is the signal fed
to the left speaker of your stereo receiver after transmission by an FM radio station.  Let
e(t) = x(t) - y(t)  denote the difference between the two signals, which we consider to be
an error signal.  Then the MSV of  e(t)  is a good measure of the quality of the system
that records and transmits  x(t)  to you.  It is usually called mean-squared error.

RMS Value:  A closely related quantity is the root mean-squared value (RMSV), which
is simply

RMS(x)  =  √MS(x)  =  √1
t2-t1 ∫

t1

t2
 x2(t) dts .

On the one hand, RMSV is nicer than MSV in that its value is easier to interpret because it
is like a typical signal value, whereas the value of the MSV is harder to interpret because
it is like the square of a typical signal value.  On the other hand, it is usually easier to
work with MSV.  For example, suppose  x(t)  has support  t1 to t2  and  suppose  y(t)  has
support  t2 to t3.  Then as derived below, the formula for the  MSV of  x(t)+y(t)  in terms
of the MSV's of  x(t)  and  y(t)  is simpler than the corresponding formula for the RMSV.

        MS(x+y) =  
1

t3-t1 ∫
t1

t3
 (x(t)+y(t))2(t) dt

=  
1

t3-t1 ∫
t1

t2
 x2(t)(t) dt  +  

1
t3-t1 ∫

t2

t3
 y2(t)(t) dt,  since y(t)=0, t<t2, x(t)=0, t>t2

=  
t2-t1
t3-t1   

1
t2-t1 ∫

t1

t2
 x2(t)(t) dt  +  

t3-t2
t3-t1   

1
t3-t2 ∫

t2

t3
 y2(t)(t) dt
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=  
t2-t1
t3-t1  MS(x) +  

t2-t1
t3-t1  MS(y) .

 RMS(x+y) =  √MS(x+y)   =  √t2-t1
t3-t1  (RMS(x))

2
  +   

t2 - t1
t3-t1  (MS(y))

2
  .

Signal Energy:  Another closely related quantity is the energy of the signal  x(t)  in the
interval  t1 to t2,  which is

E(x)  =  ∫
t1

t2
 x2(t) dt .

By comparing this, with previous definitions, we see that energy is the integral of
instantaneous power.  It is also the average power multiplied by the length of the interval.
Alternatively, average power is energy divided by the length of the interval over which it
is computed.  A little thought will convince you that it is energy for which an electric
utility company actually charges.
Since signal energy and average power (MSV) are related by a constant, the choice of
which to focus on is often a matter of taste.  If you focus on one, you can easily compute
the other.
However, for signals infinite duration often have infinite energy (over their entire
support).  For such signals, power is usually a more interesting quantity than energy.

Variance3 and Standard Deviation3:  The mean-squared value of  x(t)  minus its
average value is called the variance of  x.  The square root of the variance is called the
standard deviation.  That is, the variance4 of  x  over the interval  t1 to t2  is

σ2(x)  =  MS(x-M(x))  =   
1

t2-t1 ∫
t1

t2
 (x(t)-M(x))2 dt

and the standard deviation is

σ(x)  =  RMS(x-M(x))  =   √1
t2-t1 ∫

t1

t2
 (x(t)-M(x))2

 dt

The variance and standard deviations are useful measures of how "variable" is the signal.
A signal with small variance or standard deviation stays close to its average value most of
the time, whereas a signal with large variance or standard deviation does not.  As with
MSV vs. RMSV,  standard deviation values are usually easier to interpret because their
values are commensurate with signal values.  On the other hand, variances are usually
easier to compute and work with.

Relationship Between Mean-Squared Value, Variance and Average Value:
The following is a useful relationship.

MS(x)  =  σ2(x) + M(x)

Derivation:

σ2(x)  =   
1

t2-t1 ∫
t1

t2
 (x(t)-M(x))2 dt     =   

1
t2-t1 ∫

t1

t2
 (x2(t)-2M(x)x(t)+M2(x)) dt

=   
1

t2-t1 ∫
t1

t2
 x2(t) dt - 

1
t2-t1 ∫

t1

t2
 2 M(x) x(t) dt +  

1
t2-t1 ∫

t1

t2
 M2(x) dt

3Variance and standard deviation will not be needed early in the course.  You can skim them now, and return to them when needed.
4The use of the term  σ2  for variance and  σ  for standard deviation is traditional.
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=  MS(x) - 2 M(x) 
1

t2-t1 ∫
t1

t2
 x(t) dt + M2(x) 

1
t2-t1 ∫

t1

t2
 dt, 

since M(x) is constant we
bring it outside integrals

=  MS(x) - 2 M(x) M(x) + M2(x)      
by definition of  M(x) and by doing

the integral on the right hand side

=  MS(x) - M2(x) ,   which is the desired relationship.

Signal Value Distribution and Histograms:  The minimum, maximum, average, and
mean-squared value are numbers that each tell us something about the values that appear
in the signal.  The signal value distribution gives a more complete picture.  Before
introducing it, let us review the general meaning of the word distribution.  As one
example, consider the collection of grades resulting from an exam.  If we speak of the
"distribution of these grades", we mean a plot like that shown below.  The horizontal axis
shows the possible grades, and the height of the plot above a given grade is proportional
to the number of exam papers with that grade.  As another example, consider the
distribution of incomes of residents of Michigan.  Again this is a plot like the one shown
below.  In this case, the horizontal axis shows the possible incomes, and the height of the
plot above a given income is proportional to the number of people with that income.

55 60 65 70 75 80 85 90 95
0

100

200

300

400

One may similarly consider the distribution of many, many quantities.  Not surprisingly,
in signals and systems, we are often interested in the distribution of values of a signal
x(t), which we call its signal value distribution.  That is, for a given signal  x(t)  we want
a plot whose horizontal axis shows the signal values and whose height above a given signal
value is proportional to the frequency with which that value5 occurs in the signal.

How do we plot the signal value distribution of a signal  x(t)?  The most common way is
make and plot a histogram.  Specifically, we divide the range of signal values from  xmin
to  xmax  into  M  equal width bins,  as illustrated below, where  M  is some integer,
usually in the range  10  to 1000.

xmin

x
xmax

w = (x     - x      )/10minmax

M=10 bins

If the signal is discrete-time, we count the number of signal values that lies within each
bin.  We then plot each count above the bin, as illustrated below.  If the signal is
continuous-time, then we repeat the same procedure on samples of the image.  That is, we
repeat the procedure on the set of values  x(T), x(2T), x(3T), ...  where  T  is the sample
spacing.  As examples, several signals and their signal value distributions are shown
below.

5Strictly speaking it is not the frequency of individual values that matter.  Rather for any value  x,  we want the frequency with which
signal values lie in a small neighborhood of  x,  say from  x-∆  to  x+∆,  where  ∆  is a small constant.
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signal signal value distribution
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These histograms were computed with Matlab using the command  hist(X,M),  where  X
is a vector containing signal samples, and  M  is the desired number of bins.

We now justify the statement made earlier that the signal value distribution gives a more
complete picture of the signal values than its minimum, maximum, average and mean-
squared values.  We do this by showing that these latter quantities can be determined, at
least approximately, from a histogram.  First, the minimum and maximum values will be
readily apparent from the histogram.  For example, the maximum value is approximately
equal to the largest bin center for which the histogram is not zero.

Next, let us show how the average value  M(x)  can be computed from the histogram.  Let
x[1], x[2], ... , x[N]  denote the signal samples.  If the histogram has  M  bins, then the
width of each bin will be  W = (xmax-xmin)/M.  The first bin is the interval
(xmin,xmin+W),  the second bin is the interval  (xmin+W,xmin+2W),  and so on.  Let  Ci
denote the center of the  ith  bin.  That is,  Ci = xmin + iW - W/2,  for  i =1,...,M.  Let  Ni
denote the number of signal values that lie in the ith bin.  Then the histogram is simply a
plot of the points  (ci,Ni),  i = 1,...,M.  The average value of the  N  signal samples is

M(x)  =  
1
N ∑

n=1

N
 x[n]
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Now we observe that we can approximately compute the sum in the above in a different
matter.  Since there are  Ni  signal values in the ith bin, we know that there are  Ni  signal
values that approximately equal  Ci.  The sum of these values is approximately  NiCi.
Making this approximation for each of the bins leads to

∑
n=1

N
 x[n]  ≅   N1C1 + N2C2 + … + NM CM .

Therefore,

M(x)  ≅   
1
N ∑

i=1

M
 Ni Ci  =  ∑

i=1

N
 
N i
N  Ci

That is, the average signal value  M(x)  is approximately the weighted average of the  Ci's
(the bin centers), where the weight multiplying  Ci  is the fraction of samples that lie in
the ith bin.

In an entirely similar fashion one may show that

MS(x)  ≅   ∑
i=1

N
 
N i
N  (Ci)2 .
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Summary of Signal Value Characteristics

The following table shows the definitions of the signal characteristics mentioned previously,
with the exception of signal value distribution, which is not easily summarized in table form.  It
also lists the analogous characteristics for discrete-time signals.

Continuous-time signal  x(t) Discrete-time signal  x[n]

support interval [t1,t2] {n1,n1+1,...,n2}

duration t2-t1 n2-n1+1

maximum value: xmax = 
 

max
t

 x(t) xmin = 
 

max
n

 x[n]

minimum value: xmin = 
 

min
t

 x(t) xmin = 
 

min
n

 x[n]

average value: M(x)  =  
1

t2-t1 ∫
t1

t2
 x(t) dt M(x)  =  

1
n2-n1+1 ∑

n=n1

n2
 x[n]

magnitude: |x(t)| |x[n]|

squared value,aka
instantaneous power: x2(t) x2[n]

mean-squared value,
aka average power: MS(x) = 

1
t2-t1 ∫

t1

t2
 x2(t) dt MS(x) =  

1
n2-n1+1 ∑

n=n1

n2
 x2[n]

RMS value: RMS(x)  =  √MS(x) RMS(x)  =  √MS(x)

energy: E(x)  =  ∫
t1

t2
 x2(t) dt E(x)  = ∑

n=n1

n2
 x2[n]

variance: σ2(x)  =  MS(x-M(x)) σ2(x)  =  MS(x-M(x))

standard deviation: σ(x)  =  √MS(x-M(x)) σ(x)  =  √MS(x-M(x))

relationship: MS(x)  =  σ2(x) + M(x) MS(x)  =  σ2(x) + M(x)


