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B . Signal Detection/Classification/Recognition

Suppose we are given a signal  r(t)  with two components,

r(t)  =  s(t) + n(t) ,

and our task is to design a system, such as illustrated below, which processes  r(t)  and
produces a decision about  s(t).
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There are three closely related versions of this, introduced below along with examples.

1. Signal/No Signal?  In this case,  s(t) = 0  or  s(t) = u(t),  where  u(t)  is some
known or partially known desired signal.  From  r(t)  decide which of these two
possibilities has occurred.  This is considered to be a detection or recognition task
because the goal is to detect or recognize whether or not  u(t)  has occurred.
Specific examples:

•  Radar:  Decide if the signal  r(t)  from the receive antenna contains a reflected
pulse at time  to.  The same issues apply to sonar.

•  Dollar bill changer:  Decide if the signal  r(t)  obtained by optically scanning a
bill is due to a genuine dollar bill.

•  Fingerprint recognition:  Decide if the signal  r(t)  obtained by optically scanning
a fingerprint contains the fingerprint of John Smith.  Similar tasks include recogni-
tion from retinal scans or voice prints.

•  Heart monitoring.  Decide if an ekg signal  r(t)  contains a characteristic indica-
ting a heart defect.

2. Which Signal?  Here,  s(t) = v1(t)  or  v2(t)  or  ...  or  vM(t),  where  M  is some
finite integer and the  vi(t)  are known signals.  From  r(t)  decide which of the
vi(t)'s  is contained in  r(t).  This is considered to be a classification or recognition
task because the goal is to classify  r(t)  according to which  vi(t)  has occurred, or
equivalently to recognize which  vi(t)  has occurred.  Specific examples:

•  Digital communication receiver:  Decide if the received signal  r(t)  contains the
signal representing zero or the signal representing one.  That is, the system must
decide if the transmitter sent zero or one.  In some systems, the transmitter has
more than two signals that it might send, and so the receiver must make a multi-
valued decision.

•  Optical character recognition:  Decide if a character printed on paper is  a or b
or c or ... .  This is especially challenging when the characters are handwritten.

•  Spoken word recognition:  Decide what spoken word is present in the signal  r(t)
recorded by a microphone.

•  The "signal/no signal" task may be considered to be a special case of the "which
signal task".

3. Signal? And if So Which Signal?  This is a combination of the two previous
subtasks --  s(t) = 0  or  v1(t)  or  v2(t)  or  ...  or  vM (t).  From  r(t)  decide
whether or not  s(t) = 0,  and if not, decide which of the  vi(t)'s  is contained in
r(t).  Examples:
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•  Digital communication receiver:  Some digital communication systems operate
asynchronously in the sense that the receiver does not know when the bits will be
transmitted.  In this case, the receiver must decide if a bit is present, and if so, is it
a zero or a one.

•  Personal identification system:  Decide if a thumb has been placed on the
electronic thumbpad, and if so, whose thumb.

•  Touch-tone telephone decoder:  Decide if the signal from a telephone contains a
key press, and if so, which key has been pressed.

 •  Spoken word recognition:  Decide is a word has been spoken and if so, what
word.

For brevity, we will use the word detection as a broad term encompassing all of the
above.

Detection Systems:  As illustrated below, a detection system usually has two sub-
systems:  the first processes the received signal in order to produce a number (or several
numbers) from which a decision can be made.  The second makes the decision based on
the number (or numbers) produced by the first.  The number or numbers produced by the
first system are called decision statistics or feature values, and the first subsystem is
called a decision statistic calculator or a feature calculator.  The second subsystem is
called the decision maker or decision device.  We will consider two general types of
detection systems, corresponding to two types of decision statistic generators -- energy
detectors and correlating detectors.
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Quality/Performance Measures:  For detection systems, the most commonly used
measure of performance is the error frequency, which as its name suggests, is simply the
frequency with which its decisions are incorrect.  We let the symbol  fe  denote the error
frequency.  The typical goal is to design the detection system to minimize  fe.

In some situations, certain types of errors are more significant than others.  For example,
from the point of view of the owner of a dollar bill recognizer, classifying a counterfeit
bill as valid is a more significant error than classifying a genuine dollar bill as invalid.  In
such cases, one will want to keep track of the frequency of the different types of errors.
And one may choose to minimize the total frequency of errors subject to constraints on
the frequencies of certain specific types of errors.  For example, the owner of a dollar bill
recognizer might insist that detector make as few errors as possible, subject to the con-
straint that it classifiy counterfeit bills as valid no more than one time in a million.

Energy Detectors for Deciding Signal/No Signal:  For the "signal/no signal" task,
the detector must decide whether  r(t)  contains signal AND noise, i.e.  r(t) = u(t) + n(t),
or just noise, i.e.  r(t) = n(t).  Since it is natural to expect that  r(t)  will have larger
energy in the former case than in the latter, it is natural to choose the energy  E(r)  of
r(t)  as the decision statistic.  (One would normally measure the energy of  r(t)  over the
support interval of  u(t).)  The decision maker would then decide that  u(t)  is present if
the energy is sufficiently large, and would decide that  u(t)  is not present otherwise.  To
make such a decision, one needs to specify a threshold, denoted τ, and the decision rule
becomes

u(t)  is present if  E(r) ≥ τ,  and  u(t) is not present if  E(r) < τ .

How to choose the threshold?  The first thing to note that is that the noise signal  n(t)  is
usually random.  That is, it is not known in advance, and it is different every time we
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measure it.  In particular, the energy of the noise will vary from decision to decision.
However, based on past experience, it is usually possible to estimate the average value of
the noise energy, which we denote  

–
 E(n).  Then we can say that when  u(t)  is not present,

the signal  r(t) = n(t)  has a random energy value, whose average is  
–
 E(n).  On the other

hand, when the signal  u(t)  is present, the energy of  r(t),  though still random tends to be
larger.  Specifically, it ordinarily has average energy equal to  E(u) + 

–
 E(n).  In summary,

when the signal  u(t)  is present, the average energy of  r(t)  is  E(u) + 
–
 E(n),  and when

u(t)  is not present, the average energy of  r(t)  is  
–
 E(n).  It is natural then to choose a

threshold that lies half way between these two average energy values.  That is, we choose

τ  =  
1
2 (E(u) + 

–
 E(n)) + 

1
2 

–
 E(n)  =  

1
2 E(u) + 

–
 E(n) .

Energy detectors can also be used for the "which signal" task, provided the signals  v1(t),
v2(t),  ... , vM(t)  have sufficiently different energies -- so different that the differences
will not be obscured by the noise.  In this case, the typical decision maker strategy is to
compare  E(r)  to the average energies  E(v1)+

–
 E(n),  E(v2)+

–
 E(n), ..., E(vM)+

–
 E(n)  that

one expects if the various  vi(t)'s  were present.  The decision maker then decides in favor
of the signal  vi(t)  such that  E(vi)+

–
 E(n)  is closest to  E(r).

Correlating Detectors for the "Which Signal Task":  For the "which signal" task,
an alternate and usually more effective method of detection (than energy detection) is to
directly compare  r(t)  to each of the signals  v1(t), v2(t), ..., vM(t).  Accordingly, we
need a measure of similarity, and we will choose correlation.  Specifically, the correlation
between two continuous-time signals  x(t)  and  y(t)  is defined to be

C(x,y)  =  ∫
t1

t2
 x(t) y(t) dt ,

where  (t1,t2)  is the time interval of interest.  Similarly, the correlation between two
discrete-time signals  x[n]  and  y[n]  is defined to be

C(x,y)  =  ∑
n1

n2
 x[n] y[n] .

For brevity, we will continue the discussion presuming continuous-time signals.  To see
why correlation is a good measure of similarity to use in detection, consider the signal
pairs shown below, in which a signal  r(t)  is compared to the three possibilities  v1(t),
v2(t)  and  v3(t).  To aid the comparisons,  r(t)  is plotted above each signal.  One can see
that  r(t)  and  v1(t)  are similar in that, roughly speaking, where one is positive, the other
is as well; where one is negative the other is as well.  Moreover,  r(t)  roughly follows the
shape of  v1(t).  On the other hand, the signals  r(t)  and  v2(t)  are rather dissimilar.
Where  v2(t) is positive,  r(t)  is sometimes negative; where  v2(t)  is increasing,  r(t)  is
sometimes decreasing.  Finally, r(t)  and  v3(t)  are very dissimilar.  Indeed,  r(t)  is very
much like the negative of  v3(t).  If one were to make a decision about which of the three
signals  v1(t), v2(t), v3(t)  was contained in  r(t)  based on visually comparing  r(t)  to the
these signals, one would clearly choose  v1(t).  And indeed this is correct, because  r(t)
was generated by adding noise to  v1(t).

Let's now consider how the same decision could be based on correlation.  To do so, let's
examine the value of correlation for each pair of signals.  The product of each pair of
signals is shown below the pair.  Correlation is the integral of the product, i.e. the area
under the plot of the product signal.  For the first pair, the product is almost entirely
positive, and the correlation is large.  For the second pair, the product is approximately
half negative and half positive, and the correlation is small because the positive and
negative areas of the product tend to cancel each other.  Finally, for the third pair, the
product is mostly negative, and the correlation gives a large negative value.
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      C(r,v1) = 16.7   C(r,v2) = 0.82      C(r,v3) = -16.7

If a detection system had to decide from the three correlation values which of the three
signals  v1(t), v2(t), v3(t)  was contained in  r(t),  clearly it should choose the one
corresponding to the largest correlation, namely,  v1(t).

Though correlation would work well in the example above, consider what would have
happened if, for example,  v2(t)  were 100 times larger.  In this case, it is easy to see that
the correlation  C(r,v2) = 82,  rather than  0.82.  Thus even though  v2  has a very
different shape than  r(t),  a decision based solely on the size of the correlation would
make the wrong decision.  We can remedy this potential shortcoming by normalizing
correlation.  That is, it is better to make a decision based on normalized correlation,
which is defined by

CN(x,y)   =   
C(x,y)

√E(x)√E(y)
   =   

1
√E(x)√E(y)

  ∫
t1

t2
 x(t) y(t) dt

where  E(x)  and  E(y)  are the energies over the interval  (t1,t2)  of  x  and  y, respec-
tively.  If the energies of the  vi(t)'s  are the same, then signal  vi(t)  that has the largest
correlation  C(r,vi)  also has the largest normalized correlation  CN(r,vi).   However,
when the  vi(t)'s  have different energies, the normalized correlation accounts properly
for such and permits the decision to be properly based.

It is a well known fact12, called the Schwarz Inequality or the Cauchy Inequality, that

|CN(x,y)| ≤ 1,

with equality if and only if one signal is an amplitude scaling of the other; i.e.  y(t) =
a x(t)  for some constant  a.  This means that normalized correlation provides an absolute,
rather than relative, measure of signal similarity.  If  CN(x,y) = 1,  it means that  x(t)  and
y(t)  differ only by an amplitude scaling, and the scale factor is positive.  That is, they
have the same shape.  If  CN(x,y) = -1,  then  x(t)  and  y(t)  again differ only by an
amplitude scaling, but this time the scale factor is negative, meaning that one signal is the

12The proof is beyond our scope.  It can often be found in linear algebra textbooks.
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"flip" of the other.  On the other hand, when  CN(x,y) = 0,   x(t)  and  y(t)  are about as
unrelated as possible.  Indeed, we say  x(t)  and  y(t)  are uncorrelated when  CN(x,y) =
0,  or equivalently, when  C(x,y) = 0.

Having introduced correlation, we can now completely describe a typical correlating
detector.  Suppose we must decide which of the signals  v1(t), v2(t), ..., vM(t)  is contained
in  r(t).  The decision statistic calculator computes and outputs  CN(r,v1), CN(r,v2), ...,
CN(r,vM).  The decision maker makes finds the largest of these, and outputs the corres-
ponding decision.

Comparison of Energy and Correlating Detectors:  There are some situations
where energy detectors cannot be used and some where correlating detectors cannot be
used.  For example, energy detectors cannot be used for the "which signal" problem when
the signals have the same energy, which is often the case in digital communications.  On
the other hand, correlating detectors cannot be used when the precise shape of the signals
is not known.  For example, in Marconi's original transatlantic radio transmission, the
transmitted signal was generated by a spark, with no known signal shape.  Clearly, a
correlating detector was out of the question!

In situations where both energy and correlating detectors can be used, it is usually found
that the latter performs significantly better than the former, i.e. it makes fewer errors.

 C. Other Signal Processing Tasks.

There are many other signal processing tasks.  Here we mention just one.

Signal Digitization:  In today's world where signal processing is increasingly done by
general or special purpose computers, it is important to convert signals into digital form.
This involves two steps:  (1) sampling, and (2) representing each sample as a binary num-
ber.  Both of these steps generally involve losses, i.e. changes to the signal.  Sampling is
the topic of Chapter 4 and will be extensively discussed there.  Converting to bits will be
the subject of one of our lab assignments.  However, let us describe here the most elemen-
tary method of converting samples to bits, called uniform scalar quantization.

With uniform scalar quantization, if we wish to represent a sample value  x[n]  with  b
bits, then as illustrated below for the case that  b = 3, we divide the range of sample
values,  (xmin,xmax)  into  2b  nonoverlapping bins of width  ∆ = (xmax-xmin)/2b.  These
bins are indexed from left to right be the integers  0, 1, 2, ..., 2b-1, and each of these
integers is represented as a  b-bit  binary number.  For example, if  b = 3, then  5 ⇔  101.
Let  xi = xmin + ∆/2 + i∆  denote the center of the ith bin.  Now, if the sample  x[n]  to be
quantized lies in the ith bin, then we represent it by the binary representation of  i,  and
we consider  x[n]  to have been quantized to the value  ci.  Note that when using this
binary number in a processing task, we consider it to represent the value  ci,  and must act
accordingly.  Actually, if the processing is done in a general purpose computer, we might
convert  i  to binary using one of the standard conventions that are convenient for doing
arithmetic, such as "two's complement".

x in xmax

0 1 2 3 4 5 6 7

c0 c1 c c3 c4 c5 c6 c7

000 001 10 011 100 101 10 111
bin index:

binary representation:

∆

A system that does both sampling and uniform scalar quantization is called an analog-to-
digital converter.
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There are more sophisticated methods for converting samples to bits that produce many
fewer bits.  These are generally called data compression methods.  Examples include
JPEG image compression, MP3 audio compression, and CELP speech compression, which
is used in digital cellular telephones, digital answering machines, and the like.  A simple
example of a JPEG like image compression is included in one of the lab assignments.
Generally speaking, data compression is done in order to reduce the amount of memory
needed to store a signal or the amount of time needed to transmit a signal.  When the
signal actually needs to be processed or played, the compressed representation must
ordinarily be changed back into a representation like the one produced by a uniform
scalar quantizer.  This is called decompression.

Concluding Remarks

Having discussed these basic signal processing tasks, it should be mentioned that from now
we will not focus on them in future lectures.  Instead we will focus on developing tools
and techniques that enable systems to perform these tasks well.  In particular, much of the
remainder of the course (corresponding to Chapters 5-8 of our text) will focus on
methods for designing and analyzing linear filters, with the applications like signal
recovery in mind.  But only from time to time will signal recovery be mentioned.  On the
other hand, the labs will be concerned with these two principal signal processing tasks and
some other tasks as well, such as signal digitization.


