
EECS 206 January 21, 2002, Release 1.0 Laboratory #2

Laboratory # 2

Signal Correlation and
Detection II

2.1 Introduction

In Lab #1, we designed an energy-based signal/no-signal detector for determining when
a signal is present. This type of detector has a wide variety of applications, from speech
analysis to communication, but it has two weaknesses. First, an energy-based detector is
very susceptible to noise, especially when the signal’s energy is small compared to the energy
of the noise. Second, such a detector cannot distinguish between different types of signals
that are mixed together.

In this laboratory, we will examine an alternative detection method that addresses these
concerns. It uses a computation called correlation to detect the presence of a signal with
a known form. In general, correlation measures the similarity between two signals. Using
correlation for detection has significant applications. For instance, it allows several signals
to be sent over a single communications channel simultaneously. It also allows the use of
radar and sonar in noisy environments. Later in this course, we will see that correlation
forms the basis for one of the most important tools in signals and systems engineering, the
spectrum.

2.1.1 “The Questions”

• How can we transmit many different signals on the same channel?

• How can we develop a radar detection scheme that is robust to noise, and how do we
characterize its performance?

The University of Michigan, All rights reserved 1

Laboratory #2 January 21, 2002, Release 1.0 EECS 206

0 5 10
−4

−2

0

2

4

x[
n]

Positively correlated

0 5 10
−4

−2

0

2

4

y[
n]

0 5 10
−10

−5

0

5

10

C(x,y) = 38

x[
n]

*y
[n

]

0 5 10
−4

−2

0

2

4

Uncorrelated

0 5 10
−4

−2

0

2

4

0 5 10
−4

−2

0

2

4

C(x,y) = 0

0 5 10
−4

−2

0

2

4

Anticorrelated

0 5 10
−4

−2

0

2

4

0 5 10
−10

−5

0

5

10

C(x,y) = −38

Figure 2.1: Examples of positively correlated, uncorrelated, and anticorrelated signals.

2.2 Background

2.2.1 Correlation

Suppose that we have two discrete-time signals, x[n] and y[n]. We compute the correlation1

between these two signals, C(x, y), using the formula

C(x, y) =
n2∑

n=n1

x[n]y[n] (2.1)

where n1 and n2 define the interval over which we are calculating the correlation. In words,
we compute a correlation by multiplying two signals together and then summing the product.
The result is a single number that indicates the similarity between the signals x[n] and y[n].

What values can C(x, y) take on, and what does this tell us about the signals x[n] and
y[n]? Let us consider the examples in Figure 2.1. In the first column, C(x, y) > 0. When
two signals have C(x, y) > 0, the signals are said to be positively correlated. Basically, this
means that the signals are more similar than they are dissimilar. In the second column,
we can see an example where C(x, y) is zero. In this case, the two signals are uncorrelated.
One might say that uncorrelated signals are “equally” similar and dissimilar. Notice, for
instance, that the signal x[n] × y[n] is positive as often as it is negative. Finally, in the
third column we see an example where C(x, y) < 0, which means that x[n] and y[n] are
anticorrelated. This means the signals are mostly dissimilar.

Note that the positively correlated signals given in Figure 2.1 are actually identical.
This is a special case; from equation (2.1), we can see that C(x, x) is simply the energy of
x[n]. When C(x, y) =

√
E(x)E(y) (as in this case), the two signals are perfectly correlated.

For two signals, this is the maximum possible correlation value. Similarly, the uncorrelated
signals here are negated versions of one another, so C(x, y) = −√

E(x)E(y) (the most
negative correlation value possible). When this happens, the two signals are called perfectly
anticorrelated.

1We will occasionally refer to this operation as “in-place” correlation to distinguish it from “running”
correlation.

2 The University of Michigan, All rights reserved

EECS 206 January 21, 2002, Release 1.0 Laboratory #2

Sometimes, it is useful to define a normalized correlation, CN (x, y), like this:

CN (x, y) =
C(x, y)√
E(x)E(y)

=
1√

E(x)E(y)

n2∑

n=n1

x[n]y[n]. (2.2)

Normalized correlation is somewhat easier to interpret. CN (x, y) always lies in the range
between -1 and 1. When two signals have a normalized correlation of 1, they are perfectly
correlated; if they have a normalized correlation of -1, then they are perfectly anticorrelated.

2.2.2 Running correlation

Suppose that we want to know the distance to a certain object. We transmit a radar pulse,
x[n], and receive a signal, y[n], that contains the reflection of our pulse off of the object.
For simplicity, let’s assume that we know y[n] is simply a delayed version of x[n], that is2,

y[n] = x[n − n0], (2.3)

However, we do not know what the delay factor, n0, is. Since n0 is proportional to the
distance to our object, this is the quantity that we wish to estimate. We can use correlation
to help us determine this delay, but we need to extend the concept of in-place correlation.

Suppose that we first guess that n0 is equal to zero. We correlate x[n] with y[n] and
record the resulting correlation value as one sample of a new signal, say r[0]. Then, we
guess that n0 is equal to one, shift x[n] over by one sample, and correlate x[n−1] with y[n].
We record this correlation value as r[1]. We can continue this shift-and-correlate procedure,
building up the new signal3 r[k] according to the formula

r[k] = C(x[n − k], y[n]) =
∞∑

n=−∞
x[n − k]y[n]. (2.4)

Once we find a value of r[k] that equals E(x), we have found the value of n0. This procedure
of building up a signal like r[k] is known as running correlation or sliding correlation. We
will refer to the resulting signal (r[k] above) as the correlation signal.

There are a couple of important features of the correlation signal. Note that the limits
of summation in equation (2.4) are infinite. In general, though, we know that the support
of x[n] and y[n] will be finite, so we do not actually need to perform an infinite summation.
The duration of the correlation signal will be equal to the sum of the durations of x[n] and
y[n] minus one4. There will also be transient effects (or edge effects) at the beginning and
end of the correlation signal. These transient effects result from cases where x[n − k] only
partially overlaps y[n].

An algorithm for running correlation

Here, we provide an algorithm for running correlation. One of its primary benefits is that it
is easy to understand. In this algorithm, we imagine the filter as a box into which we drop
one new sample of the “incoming” signal and a corresponding new sample of the correlation
signal comes out. This allows the algorithm to be used in real-time: as samples of our signal

2Recall that a signal x[n − n0] is equal to the signal x[n] shifted n0 samples to the right.
3Note that we can index a signal by any variable; there is no difference between r[k], r[n], or r[l]. Here,

we are simply introducing a new index variable to prevent confusion in equation (2.4).
4Suppose that support interval of x[n] is nx1 ≤ n ≤ nx2 , while the support interval of y[n] is ny1 ≤ n ≤

ny2 . For this general case, we can see that the first nonzero sample of r[k] will occur at k = ny1 − nx2 .
Similarly, the last nonzero sample will fall at k = ny2 − nx1 . Thus, the duration of r[k] is (ny2 − ny1) +
(nx2 − nx1) + 1 = (ny2 − ny1 + 1) + (nx2 − nx1 + 1)− 1 = duration(x) + duration(y)− 1.

The University of Michigan, All rights reserved 3

Laboratory #2 January 21, 2002, Release 1.0 EECS 206

arrive (from a radar detector, for instance), we can process the resulting signal with almost
no delay.

In this algorithm we refer to the signal we are looking for (i.e., the transmitted radar
signal) as x[n], following (2.4). The algorithm goes like this:

1. Initialize an input buffer, which is simply an array with length equal to the duration
of x[n], to all zeros.

2. For each sample that comes in:

(a) Update the buffer by doing the following:
i. Discard the sample at the beginning of the buffer.
ii. Shift the rest of the samples one place towards the beginning of the buffer.
iii. Insert the incoming sample at the end of the buffer.

(b) Initialize a running sum variable to zero.
(c) For each position, n, in the buffer:

i. Multiply the nth position in the input buffer by the nth sample of x[n].
ii. Add the resulting product to the running sum.

(d) Output the running sum as the next sample of the correlation signal.

In the laboratory assignment, you will be asked to complete an implementation of this
algorithm. Note that significant portions of this algorithm can be implemented very simply
in Matlab. For instance, all of (a) can be accomplished using a single line of code. Similarly,
parts (b) through (d) can all be accomplished in a single line using one of Matlab’s built-in
functions and its vector arithmetic capabilities.

2.2.3 Using running correlation for signal detection

Whenever we wish to use correlation for signal detection, we use a two-part system. The
first part of the system performs the correlation and produces the correlation signal. The
second part of the system examines the correlation signal and makes a decision. See the
block diagram given in Figure 2.2.

Correlation
Calculator

Decision
Maker

DecisionInput
Signal

Correlation
Signal

Figure 2.2: A generalized block diagram for a correlation-based detection system.

In the radar example used to motivate running correlation in Section 2.2.2, we simply
checked to see if the correlation signal at a given point equals the energy of the transmitted
signal. While this will work for the idealized system presented, real systems are usually much
less ideal. We may have multiple reflections, distorted reflections, reductions in reflection
amplitude, and other environmental noise. In order to address these and other, similar
problems in a wide variety of systems, we commonly use a simple threshold comparison as
our decision maker. For instance, if we compute a running correlation signal r[n], we might
make a decision for each sample of based on the following formula:

r[n]
1

≷
0

c (2.5)

4 The University of Michigan, All rights reserved

EECS 206 January 21, 2002, Release 1.0 Laboratory #2

0 10 20 30 40 50 60 70 80 90 100

−1

0

1

0 10 20 30 40 50 60 70 80 90 100

−1

0

1

0 10 20 30 40 50 60 70 80 90 100

−1

0

1

Figure 2.3: Example code signals for simultaneous communications

If the correlation signal’s value for a given sample is greater than the threshold, c, we decide
1, or “signal present.” If the value is less than the threshold, we decide 0, or “signal absent.”
In our radar example, for instance, we might select the threshold to be c = E(x)/2.

2.2.4 Using correlation for simultaneous communications

Suppose that we wish to implement a multi-user wireless communication system5. That
is, many people will want to send different signals simultaneously; however, we only have a
single communication channel (in this case, a small portion of the electromagnetic spectrum).
The users of this system are completely uncoordinated, so no user has any idea who else
might be using the system at any given time. How can we develop a system so that each
user can use the system without experiencing interference from the other users?

It turns out that we can use a correlation-based detector to address this problem. Sup-
pose that each user is trying to send a binary message to a friend. Each user has a different
code signal, like those shown in Figure 2.3. Each code signal is made up of some number of
chips, which are regions of constant signal value; the signals shown here each consist of ten
chips. To send a binary “one,” the user transmits his or her code signal. To send a binary
“zero,” a user instead transmits a negated version of his or her code signal (i.e., one that is
perfectly anticorrelated with their code signal). In order to send a desired sequence of bits,
the user concatenates these positive and negative versions of the code signal into a sequence
of code signals and then transmits this sequence to his or her friend. When a user’s friend
receives the sequence of code signals, the friend correlates each code signal (in-place) with
the user’s code signal. When the resulting correlation is greater than zero (the threshold
for this system), the friend records a “one;” when it is less than zero, the friend records a
“zero”.

This method has benefits when multiple users are using the channel simultaneously, or
when there is other noise on the channel. In this case, when a user’s friend receives a signal,
it will be the sum of that user’s sequence of code signals plus some other users’ sequences
and/or noise. However, the system is designed so that the correlation between two different
code signals (or between a code signal and noise) is reasonably small. Consider the examples
in Figure 2.3. The first two code signals are completely uncorrelated, as are the second two.
The first and third signals are slightly anticorrelated. The normalized correlation between
these signals is only -0.2. This should be compared to the correlation values of 1 and -1 that

5This is the problem faced by 600 Mhz cordless telephones, and the solution we will present is similar to
the actual solution used.

The University of Michigan, All rights reserved 5

Laboratory #2 January 21, 2002, Release 1.0 EECS 206

result when a “proper” code signal is detected. Note that longer code signals have greater
energy and are more easily distinguished from other code signals or from noise.

Above, we’ve indicated that our system uses in-place correlation. This means that this
system is synchronous; that is, the receiver knows when bits are sent. We can actually
save ourselves some work by using running correlation rather than in-place correlation, and
then sampling the resulting correlation signal at the appropriate times. This is how we will
implement this communication system in the laboratory assignment. Using the running
correlation algorithm presented in this lab, the “appropriate times” occur in the correlation
signal at the end of each code signal. That is, if our code signals are N samples long, we
want to pick off the (k × N)th sample to decode the kth transmitted bit.

It is worth noting that the threshold used to decode bits in this communication system,
which we set to zero, is actually a design parameter of the system. It might happen, for
instance, that the system’s noise is biased so that we tend to get slightly positive correlations
when no signal is sent. In this case, we can improve performance of the system by adjusting
the threshold. For another example, we might want to decide that no bit has been sent if
the magnitude of the correlation is below some threshold. In this case, we actually have two
thresholds. One separates “no signal” from a binary “one;” the other separates “no signal”
from a binary “zero.”

2.2.5 Noise, detector errors, and setting the threshold

Let’s develop the radar example from Section 2.2.2 into a somewhat more realistic case. We
transmit the signal x[n] and receive a signal y[n]. y[n], however, is no longer simply a single
delayed replica of the transmitted signal. Instead, y[n] may contain multiple reflections
from several objects. We may not know how many objects are present, but we would like
to determine the distance to each one. Also, we expect that y[n] contains some amount of
environmental noise that is unrelated to the transmitted signal.

In Section 2.2.3, we argued that a threshold-based decision maker was useful for such
systems. Such a decision maker, though, will generally not perform perfectly. What happens
if no reflected pulse is received, but the correlation signal falls above the threshold? Similarly,
what happens if a reflected pulse is received without pushing the correlation signal above
the threshold. In either case, the system has made an error. The likelihood of an error
is dependent upon a number of factors, including the threshold itself and the amount of
noise in the signal. In any real-world detection system, some possibility of error is generally
unavoidable. Thus, we generally attempt to minimize the likelihood of errors, rather than
expecting to eliminate them entirely.

There are two types of error that our detector can make. First, our detector could
detect a reflection of the transmitted signal where no actual reflection exists. This is called
a false alarm. A false alarm occurs when the correlation of the noise with transmitted signal
exceeds the threshold. The other type of error occurs when the detector fails to detect a
real reflection because the noise causes the correlation to drop below the threshold when a
signal is present. This type of error is called a miss.

Depending on the detection system being developed, these two types of error could be
equally undesirable or one could be more undesirable than another. For instance, in a
defensive radar system, false alarms are probably preferable to misses, since the former are
decidedly less dangerous. We can trade off the likelihood of these two types of error by
adjusting the threshold. Raising the threshold decreases the likelihood of a false alarm,
while lowering it decreases the likelihood of a miss.

It is often useful to know the likelihood of each type of error. There is a simple way
of empirically determining these relative likelihoods. First, we obtain a signal, n[k] that
contains just the environmental noise that our system will see when in use. This is easy to

6 The University of Michigan, All rights reserved

EECS 206 January 21, 2002, Release 1.0 Laboratory #2

do by simply recording signal from the detector without transmitting a radar pulse. Then,
we perform running correlation between n[k] and the pulse we intend to transmit, x[k].
The resulting correlation signal, nc[k], is a sample of what the decision subsystem (i.e., the
threshold) will see when no signal is present. We can count the number of times that nc[k]
exceeds the threshold, c:

nc[k] > c. (2.6)

Then, if we divide by the total number of samples (i.e., the maximum possible number of false
alarms), we have estimated the false alarm rate, which is the chance that any given sample
will be a false alarm. Assuming that the noise characteristics do not change significantly, we
can also use this technique to estimate the miss rate. When a signal is present, the signal
values of the correlation signal will be approximately equal to the signal values without the
signal plus the energy of the transmitted pulse. Thus, we can estimate the number of misses
by counting the number of times that the following condition is met:

nc[k] + E(x) < c (2.7)

or
nc[k] < c − E(x) (2.8)

Dividing the resulting count by the total number of samples gives us an estimate of the miss
rate.

The signal value distribution is also useful here. If we plot the histogram of values in
nc[k], we can use this plot determine the error rates . The false alarm rate is equal to the
area of the histogram that exceeds c divided by the total area of the histogram6. As we
noted above, the signal value distribution of the correlation signal with a reflected pulse
present is equal to the distribution of nc[k] shifted to the right by E(x). Alternatively, we
can shift the threshold to the left by E(x). Then, the miss rate is equal to the area of the
histogram that falls below c−E(x) divided by the total area of the histogram. This allows
us to set a threshold quickly simply by inspecting the histogram of nc[k].

Assuming that the distribution of nc[k] is symmetric, we can minimize the total error
rate (which is simply the sum of the false alarm and miss rates) by setting a threshold that
yields the same number of false alarms as misses. It turns out that this threshold value
is equal to E(x)/2. We can argue for this intuitively. Since we’ve assumed a symmetric
distribution for nc[k], the each type of error rate is dependent entirely on the distance of
the thresholds c and c−E(x) from the origin. To equalize the two types of error, then, the
magnitude of each threshold should be the same. To achieve this, we must to set c equal to
E(x)/2, which results in thresholds of E(x)/2 and −E(x)/2.

2.3 Some Matlab commands for this lab

• Calculating in-place correlation: If you have two signals, x and y, that you wish
to correlate, simply use the command

>> c_xy = sum(x.*y);

Note that x and y must be the same size; otherwise Matlab will return an error.

• The subplot command: In order to put several plots on the same figure in Matlab,
we use the subplot command. subplot creates a rectangular array of axes in a figure.

6That is, we sum the values in this region of the histogram and divide by the sum of all values in the
histogram

The University of Michigan, All rights reserved 7

Laboratory #2 January 21, 2002, Release 1.0 EECS 206

0 100 200
−1

−0.5

0

0.5

1

20 30 40
−1

−0.5

0

0.5

100 120 140
−1

−0.5

0

0.5

90 100 110 120
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

70 80 90 100 110

0.2

0.4

0.6

0.8

1

Figure 2.4: Example of a Matlab figure with subplots.

Figure 2.4 has an example figure with such an array. Each time you call subplot, you
activate one of the axes. subplot takes three input parameters. The first and second
indicate the number of axes per row and the number of axes per column, respectively.
The third parameter indicates which of the axes to activate by counting along the
rows7. Thus the command:

>> subplot(2,3,5)

activates the plot with the circle in Figure 2.4.

• The axis command: The command axis allows us to set the axis range for a particu-
lar plot. Its single input argument is a vector of the form [x_min, x_max, y_min, y_max].
For instance, if you wish to change the display range of the currently active plot (or
subplot) so that the x-axis ranges from 5 and 10 and the y-axis ranges from -100 to
100, simply execute the command

>> axis([5, 10, -100, 100]);

Other useful forms of the axis command include axis tight, which fits the axis
range closely around the data in a plot, and axis equal, which assures that the x-
and y-axes have the same scale.

• Buffer operations in Matlab: It is often useful to use Matlab’s vectors as buffers,
with which we can shift values in the buffer towards the beginning or end of the buffer
by one position. Such an operation has two parts. First, we discard the number at
the beginning or end of the buffer. If our buffer is a vector b, we can do this using
either b = b(2:end) or b = b(1:end-1). Then, we append a new number to the
opposite end of the buffer using a standard array concatenation operation. Note that
we can easily combine these two steps into a single command. For instance, if b is a
row vector and we wish to shift towards the end of the buffer, we use the command

>> b = [new_sample, b(1:end-1)];

• Counting elements that meet some condition: Occasionally we may want to
determine how many elements in a vector meet some condition. This is simple in

7Note in particular that this is the opposite of Matlab’s usual convention!

8 The University of Michigan, All rights reserved

EECS 206 January 21, 2002, Release 1.0 Laboratory #2

Matlab because of how the conditional operators are handled. Recall that for a
vector, v, (v == 3) will return a vector with the same size as v, the elements of which
are either 1 or 0 depending upon the truth of the conditional statement. Thus, to
count the number of elements in v that equal 3, we can simply use the command

>> count = sum(v == 3);

2.4 Demonstrations in the Lab Section

• Detector error types

• Why use correlation? Or, when energy detectors break down.

• “In-place” correlation as a similarity measure

• Running correlation

• Multi-user communication

2.5 Laboratory Assignment

1. Download the file code_signal.m and use it to create the following signals:

>> code1 = code_signal(75,10);
>> code2 = code_signal(50,10);
>> code3 = code_signal(204,10);

(a) Use subplot and stairs to plot the three code signals on three separate axes in
the same figure. After plotting each signal, call axis([1, 100, -1.5, 1.5]) to
make sure that the signal is visible.

• [4] Include your figure, with axis labels on each subplot, a figure number and
caption, and the generating code in your report.

(b) For each of the three signals generated above, calculate:

• [3] Their mean values.
• [3] Their energies.

(c) Calculate the “in-place” correlation for the following pairs of signals.

• [2] code1 and code2

• [2] code1 and code3

• [2] code2 and code3

(d) Which of the above pairs are:

• [2] Positively correlated?
• [2] Uncorrelated?
• [2] Anticorrelated?

(e) Each signal generated by code_signal can be thought of as a representation of a
10-bit number. This 10-bit number is the first input parameter to code_signal.
Note that for any 10-bit number, there are ten other 10-bit numbers that are
different from it by only one bit.

The University of Michigan, All rights reserved 9

Laboratory #2 January 21, 2002, Release 1.0 EECS 206

• [3] What is the normalized correlation between two 10 chip code signals that
are different only by one chip?

2. Download the file run_corr.m from the course web page. run_corr.m is a “skeleton”
file for an implementation of the “real-time” running correlation algorithm described
in Section 2.2.2. It accepts two input signals, performs running correlation on them,
and produces the correlation signal with a length equal to the sum of the lengths of
the input signal minus one.

(a) Complete the function, following the algorithm given in Section 2.2.2. You can
use the completed demo version of the function, run_corr_demo.dll to check
your function’s output8.

• [10] Include your code in the Matlab appendix of your report.

(b) Use run_corr.m to compute the running correlation between the following pairs
of signals, and plot the resulting correlation signals on the same figure using
subplot.

• [2] code1 and code2.
• [2] code3 and itself.

(c) When performing running correlation with a signal and itself, the resulting cor-
relation signal has some special properties. Look at the correlation signal that
you computed between code3 and itself.

• [1] Is the correlation signal symmetric? It can be shown that it should be.
• [2] What is the maximum value of the correlation signal? How does this

relate to the energy of code3?

3. Download the file lab2_data.mat and load it into your workspace. The file contains
the variable dsss, which we will use in this problem. dsss9 is a signal that is the
sum of four sequences of different code signals corresponding to bit sequences from
four different users. One of the code signals is a ten chip signal corresponding to the
integer 170, while another is a six chip signal corresponding to the integer 25. The
other two code signals are unknown to us. In this problem, we will try to extract the
bit sequences for the known code signals from dsss. Start by generating the following
code signals:

>> cs1 = code_signal(170,10);
>> cs2 = code_signal(25,6);

(a) Start by using run_corr to correlate cs1 with dsss. Call the resulting signal
cor1.
Now, since this communication technique is synchronous (as discussed in Section
2.2.4) we need to extract the appropriate samples from cor1. We can do this in
Matlab using the following command:

>> sub_cor1 = cor1(length(cs1):length(cs1):length(cor1));

sub_cor1 the contains the correlation values only at the appropriate samples for
synchronous reception. We compare these values to a threshold to identify the
bits.

8If you cannot get your function working properly, you may use run corr demo.dll to complete the rest
of the assignment.

9This name comes from the name of the communication technique, Direct Sequence/Spread Spectrum.

10 The University of Michigan, All rights reserved

EECS 206 January 21, 2002, Release 1.0 Laboratory #2

• [2] Use stem to plot sub_cor1.
• [4] Decode the sequence of bits using zero as your threshold. (Hint: The

sequence is 10 bits long, and the first 3 bits are “011”.)

(b) Repeat the procedure in a and b above, this time using the code signal cs2. Call
your correlation signal cor2, and the vector of extracted values sub_cor2.

• [2] Use stem to plot the signal sub_cor2.
• [4] Decode the sequence of bits. (Hint: there are 17 bits in this sequence.)
• [2] Since the code signal cs2 has fewer chips (i.e., it is shorter), there is a

greater chance of error. Are there any decoded bits that you suspect might
be incorrect? Which ones? Why?

4. lab2_data.mat also contains three other signals: radar_pulse, radar_received, and
radar_noise. The received signal contains several reflections of the transmitted radar
pulse and noise. The signal radar_noise contains noise with similar characteristics
to the noise in the received signal without the reflected pulses.

(a) First, let’s take a look at the first two signals.

• [2] Calculate the energy of radar_pulse.
• [3] Use subplot to plot radar_pulse and radar_received in separate axes

of the same figure.
• [1] Can you identify the reflected pulses in the received signal by visual

inspection alone?

(b) Use run_corr to correlate radar_pulse with radar_received.

• [3] Plot the resulting correlation signal.
• [2] Where are the received pulses? Visually identify sample locations f each

pulse in the correlation signal.
• [4] Given that the speed of light is 3× 108 m/s and the sampling frequency

of the detector is 107 samples per second, what is the approximate distance
to each object10?

(c) In a real radar detector, the correlation signal would be compared to a thresh-
old to perform the detection. To begin with, let’s consider a threshold that is
equal to one-half the energy of the transmitted pulse. Perform running correla-
tion between radar_pulse and radar_noise call the resulting correlation signal
noise_c.

• [2] Plot noise_c.
• [3] For how many samples is noise_c greater than this threshold? Use this

value to estimate the false alarm rate.
• [3] For how many samples is noise_c less than this threshold minus the

energy of the transmitted pulse? Use this value to estimate the miss rate.
• [2] What is the total error rate for this threshold?

(d) As discussed in Section 2.2.5, we can use a histogram to judge the number of
errors as well.

• [3] Plot the histogram of noise_c using 100 bins.
• [3] Describe how you could derive the error numbers in problem 4c from the

histogram.
10Remember that the radar pulse must travel to the object and then back again.

The University of Michigan, All rights reserved 11

Laboratory #2 January 21, 2002, Release 1.0 EECS 206

(e) Suppose that detector false alarms are considered to be more serious than detector
misses. Thus, we have determined that we want to raise the threshold so that we
achieve a false alarm rate of approximately 0.004. Find a threshold that satisfies
this requirement.

• [4] What is your threshold?
• [3] What is the false alarm rate on this noise signal with your threshold?
• [3] What is the miss rate on this noise signal with your threshold?
• [3] What is the total error rate for the new threshold? Compare this to the

total error rate of the threshold used in problem 4c.

12 The University of Michigan, All rights reserved

