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Laboratory # 3

Sinusoids and Sinusoidal
Correlation

3.1 Introduction

Sinusoids are important signals. Part of their importance comes from their prevalence in
the everyday world, where many signals can be easily described as a sinusoid or a sum
of sinusoids. Another part of their importance comes from their properties when passed
through linear time-invariant systems. Any linear time-invariant system whose input is a
sinusoid will have an output that is a sinusoid of the same frequency, but possibly with
different amplitude and phase. Since a great many natural systems are linear and time-
invariant, this means that sinusoids form a powerful tool for analyzing systems.

Being able to identify the parameters of a sinusoid is a very important skill. From a
plot of the sinusoid, any student of signals and systems should be able to easily identify the
amplitude, phase, and frequency of that sinusoid.

However, there are many practical situations where it is necessary to build a system that
identifies the amplitude, phase, and/or frequency of a sinusoid — not from a plot, but from
the actual signal itself. For example, many communication systems convey information by
modulating, i.e. perturbing, a sinusoidal signal called a carrier. To demodulate the signal
received at the antenna, i.e. to recover the information conveyed in the transmitted signal,
the receiver often needs to know the amplitude, phase, and frequency of the carrier. While
the frequency of the sinusoidal carrier is often specified in advance, the phase is usually not
specified (it is just whatever phase happens to occur when the transmitter is turned on),
and the amplitude is not known because it depends on the attenuation that takes place
during transmission, which is usually not known in advance. Moreover, though the carrier
frequency is specified in advance, no transmitter can produce this frequency exactly. Thus,
in practice the receiver must be able to “lock onto” the actual frequency that it receives.

Doppler radar provides another example. With such a system, a transmitter transmits a
sinusoidal waveform at some frequency f,. When this sinusoid reflects off a moving object,
the frequency of the returned sinusoid is shifted in proportion to the velocity of the object. A
system that determines the frequency of the reflected sinusoid will also be able to determine
the speed of the moving object.

How can a system be designed that automatically determines the amplitude, frequency
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and phase of a sinusoid? One could imagine any number of heuristic methods for doing
so, each based on how you would visually extract these parameters. It turns out, though,
that there are more convenient methods for doing so — methods which involve correlation.
In this lab, we will examine how to automatically extract parameters from a sinusoid using
correlation. Along the way, we will discover how complex numbers can help us with this task.
In particular, we will make use of the complex exponential signal and see the mathematical
benefits of using an “imaginary” signal that does not really exist.

3.1.1 “The Question”

e How can we design a system that automatically determines the amplitude and phase
of a sinusoid with a known frequency?

e How can we design a system that automatically determine the frequency of a sinusoid?

3.2 Background

3.2.1 Complex numbers

Before we begin, let us quickly review the basics of complex numbers. Recall the a complex
number z =  + jy is defined by its real part, x, and its imaginary part, y, where j = /—1.
Also recall that we can rewrite any complex number into polar form! or exponential form,
z = red? ) where r = |z| is the magnitude of the complex number and § = angle(z) is the
angle. We can convert between the two forms using the formulas

x = rcos(d) (3.1)
= rsin(6)

and

ro= Va2+y? (3.3)

tan—! (¥), x>0
0 = { tan~? g%g +m, <0 (3.4)

A common operation on complex numbers is the complex conjugate. The complex con-
jugate of a complex number, z*, is given by

*

¥ = x—jy (3.5)
re=9% (3.6)

Conjugation is particularly useful because zz* = |z|2.

Euler’s? formula is a very important (and useful) relationship for complex numbers. This
formula allows us to relate the polar and rectangular forms of a complex number. Euler’s
formula is

el% = cos(h) + jsin() (3.7)

1Sometimes the polar form is written as z = /6, which is a mathematically less useful form. This form,
however, is useful for suggesting the interpretation of r as a radius and 6 as an angle.

2Pronounced “oiler’s”.
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Equally important are Euler’s inverse formulas:

jo —jo

cos(f) = % (3.8)
jo0 _ ,—30

sin() = % (3.9)

It is strongly recommended that you commit these three equations to memory; you will be
using them regularly throughout this course.

3.2.2 Sinusoids and complex exponential signals in continuous and
discrete time

Recall that a continuous-time sinusoid in standard form, s(t), is given by the formula
s(t) = Acos(wot + @), (3.10)

where A is the sinusoid’s amplitude, wy is the sinusoid’s frequency given in radian frequency
(radians per second), and ¢ is the sinusoid’s phase. It is also common to represent such a
sinusoid in the following form

s(t) = Acos(2m fot + &), (3.11)

where fj is the sinusoid’s frequency given in Hertz (Hz, or cycles per second). Note that
wo = 27 fy. The frequency of a sinusoid is generally restricted to be positive.

Discrete-time sinusoids are defined in a similar way. A discrete-time sinusoid in standard
form, s[n], is given by the formula

s[n] = Acos(won + ), (3.12)

where @y is the frequency of the sinusoid in discrete radian frequency (radians per sample).
For now, we will restrict &g for discrete-time sinusoids to be in the range [0, 7]3. If s[n] is
a sampled version of a continuous-time sinusoid, then wy = wyTs where T is the sampling
period. The sampling period is simply the time that separates two samples of a sampled
signal.

The notation for sinusoids also extends to a special signal known as the complex expo-
nential signal*. Complex exponential signals are very similar to sinusoids, and have the
same three parameters. We define a continuous-time complex exponential signal, ¢(t), in
standard form as

c(t) = Aelwot+9) (3.13)
It is generally useful to consider that sinusoids are composed of a sum of complex exponential
signals by using Euler’s inverse formulas. Thus, a sinusoid in standard form can be rewritten
in several different ways:

s(t) = Acos(wot + @) (3.14)
_ g[ej(wot+¢)+e—j(wot+¢)} (3.15)
_ c(t)++(t) (3.16)
= Re{ae/orto} (3.17)

3Chapter 4 will provide more details about discrete-time signals and discrete radian frequency
4These are sometimes referred to simply as complex exponentials.
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Imaginary

Time

Figure 3.1: Three-dimensional plot of a complex exponential signal.

We can also interpret complex exponential signals by using Euler’s formula. ¢(t) can be
viewed as the sum of a real cosine wave and an imaginary sine wave.

c(t) = Acos(wot + @) + jAsin(wot + @) (3.18)

Sometimes it is useful to visualize a complex exponential signal as a “corkscrew” in three
dimensions, as in Figure 3.1. Note that it is common to refer to complex exponential signals
as having either positive or negative frequency. The sign of the frequency determines the
“handedness” of the corkscrew.

We can define discrete-time complex exponentials in much the same way as discrete-time
sinusoids. If ¢[n] is a discrete time complex exponential, we can write a formula of the form

c[n] = Aed(@on+e) (3.19)

We will restrict wg for discrete-time complex exponential signals to be in the range [—m, 7).
This range is larger than the range set for discrete-time sinusoids because we allow complex
exponentials with negative frequency. This is because a sinusoid of frequency @y, 0 < &g < T,
is also the sum of two complex exponentials — one at frequency @y, and the other at
frequency —&y. Once again, we can define @y = wyTs for a sampling period T.

3.2.3 Calculating A and ¢ for a sinusoid with known wy

We've suggested that we can use correlation to help us determine the amplitude and phase
of a sinusoid with known frequency. We will present the derivation in continuous time, since
we are generally more familiar with integrals than with summations. Once our derivations
are complete, we will relate the derivation to the discrete-time case.

Suppose that we have a continuous-time sinusoid s(t) (the target sinusoid) with known
frequency wg but unknown amplitude, A, and phase, ¢. We can perform in-place correlation®

5In-place correlation between two real, continuous-time signals, x(t) and y(t) is defined as C(z,y) =
f: z(t)y(¢)dt. The length (b — a) is the correlation length.
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between this sinusoid and a reference sinusoid, u(t), with the same frequency and known
amplitude and phase. Without loss of generality, let u(t) have A =1 and ¢ = 0. Then®,

b
C(s,u) = / A cos(wot + ¢) cos(wot)dt (3.20)
b
= é /a cos(¢) + cos(2wot + ¢)dt (3.21)
A 1 ’
= 3 [cos(d))t + oo sin(wot + @) ) (3.22)

Since we know the frequency, wg, we can easily set the limits of integration to include an
integer number of periods of our sinusoids. In this case, the second term evaluates to zero
and the correlation reduces to

C(s,u) = g cos(¢)(b— a) (3.23)

This formula is a useful first step. If we happen to know the phase, we can readily calculate
the amplitude. Similarly, if we know the amplitude, we can narrow the phase down to one
of two values. If both are unknown, though, we cannot uniquely determine them.

One common way to proceed is to correlate with a second reference sinusoid that is 5 out
of phase with the first. Here, though, we will explore a different method which is somewhat
more enlightening. Notice what happens if we use a complex exponential, c(t) = e/“0t as
our reference signal”:

b
C(s,c) = /s(t)c*(t) (3.24)

b
= /Acos(wot+¢)e_j‘”°tdt (3.25)
b
AT . . )
_ 22| pi(wot+9) —j(wot+e) | ,—jwot
/a 5 [e +e }e dt (3.26)
A [ ,
= 3 / 79 4 eI (w0t te) gy (3.27)
b
= Algery —L icworte) (3.28)
2 2jw0 a

If we again assume that we are correlating over an integer number of periods of our target
sinusoid, the second term goes to zero and we are left with

C(s,c) = gej‘b(b—a). (3.29)

Our correlation has resulted in a simple complex number whose magnitude is directly pro-
portional to the amplitude of the original sinusoid and whose angle is identically equal to

6Recall that cos(A) cos(B) = %COS(A - B)+ % cos(A + B).
"Notice that we conjugate our complex exponential here. This is because correlation between two complex

signals is defined as [ z(t)y*(t)dt in continuous-time or Y z[n]y*[n] in discrete-time.
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its phase! We can easily turn the above formula inside out to obtain

A = bfa|0(5,c)| (3.30)

¢ = angle(C(s,c)) (3.31)

We can also see from equation (3.29) that in correlating with a complex exponential signal,
we have effectively calculated the phasor® representation of our sinusoid.

Discrete-time sinusoids and non-ideal cases

We can derive the above result for discrete-time sinusoids as well. This is because the sum of
any number of samples from exactly one period of a uniformly sampled sinusoid or complex
exponential will always equal zero, just as the integral goes to zero in the continuous-time
case. Thus, if we correlate over an integral number of periods of a discrete-time sinusoid,

b

C(s,c) = Z s[n]c*[n] (3.32)
b
= Z Acos(@on + ¢)eI%on, (3.33)

where a and b are now integers, the result, after considerable simplification, is
A j
C(s,c) = 563 (b—a+1). (3.34)

Recall that b — a + 1 is the number of samples over which the correlation is calculated.
Again, we can solve for A and ¢ as

2
A = mm‘(s, o) (3.35)
¢ = angle(C(s,c)) (3.36)

There is one additional caveat to a discrete-time implementation. In order to achieve the
exact result presented here, the frequency of the input sinusoid must be a rational multiple®
of 27, If it is not, then the sampled sinusoid is not actually periodic! In this case, we clearly
cannot correlate over an integral number of periods of the sinusoid. In some cases, though,
we can relax the “integral number of periods” assumption.

In particular, note what happens if we do not integrate over an integer number of periods
in continuous-time. In this case, our calculation of C(s,¢) we will also include the second
term from equation (3.28). This additional “error” term can have a magnitude no larger than
ﬁ, which is independent of the length of the correlation interval. The “true” correlation
value given by equation (3.29), on the other hand, is proportional to the length of the
correlation interval. The “error” term for the discrete-time case is more complicated, but
is still independent of the length of the correlation interval. Thus, in both cases we can

minimize the effects of the “error” by simply correlating over a sufficiently long time period.

8When we represent a sinusoid with amplitude A and phase ¢ as the complex number Ae/? to simplify
the calculation of a sum of two or more sinusoids, this complex number is known as a phasor.
9That is, &g = 271'% for any integers N and M.
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Signal vect .

gnat vector Amplitudeand |—— Amplitude
Support vector Phase Calculator

Frequency — (APC) Phase

Figure 3.2: System diagram for the “amplitude and phase calculator.”

Implementation Notes

In the laboratory assignment, we will be implementing an “amplitude and phase calculator”
(APC) as a MATLAB function. A diagram of this system is shown in Figure 3.2. The system
takes three input parameters. The first is the signal vector which contains the sinusoid itself.
The second is the support vector for the sinusoid. Note that the support vector can contain
either integers (for a purely discrete-time signal) or real numbers (for a sampled continuous-
time signal). The third input parameter is the frequency of the sinusoid in radians per
sample (for a discrete-time sinusoid) or radians per second (for a sampled sinusoid). Note
that for the system’s output to be exact, the input sinusoid must be defined over exactly an
integer number of periods.

The system outputs the sinusoid’s amplitude and its phase in radians. The system
calculates these outputs by first computing the in-place correlation given by equations (3.32)
and (3.33). Then, this correlation value is used with equations (3.35) and (3.36) to compute
the amplitude and phase.

3.2.4 Determining the frequency of a target sinusoid

Suppose now that we are given the task of automatically determining the frequency of a
particular target sinusoid. It turns out that correlation can help us with this problem as
well. Consider the following case. Let the target sinusoid be defined by s(t) = A cos(wst+¢),
where w;, A, and ¢ are all unknown. We correlate s(t) with a complex exponential signal,
c(t) = evt, with frequency w., where wy # we:

b
C(s,c) = /S(t)C*(t) (3:57)
(lb ‘
— /Acos(wst—kqi))e_](wnt)dt (3.38)
b
A _ .
_ / 5 |:6J(wst+¢)+67](wst+¢)j| e*J(Wct)dt (339)
A b ,
_ 4 / Ilws—wet+d] o o—ilwstwe)t+d] gy (3.40)
b
= AL el 4 L iletwoteel (3.41)
2 |ws — we Ws + We a
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Here, let us make a simplifying assumption and assume that (ws + w,) is sufficiently large
that we can neglect the second term. Then, we have

A [(ws —w —Jl(ws—we)a
Cls,¢) =~ TRy [ey[( s—we)bte] _ p—il(ws—we) +¢]} (3.42)

The resulting equation is primarily dependent upon the frequency difference between the
target sinusoid and our reference signal. Though it is not immediately apparent, the value of
this correlation converges to the value of equation (3.29) as the frequency difference (ws—w)
approaches zero. N

Consider the length-normalized correlation, C(s, ¢), defined as

C(s,c) = Cb(i’z) .

(3.43)

The length-normalized correlation is constant if the reference and target signals have the
same frequency, as we can see from equation (3.29). However, when the signals have dif-
ferent frequencies, the magnitude of the length-normalized correlation becomes smaller as
we correlate over a longer period of time. (This happens more slowly as the frequency
difference becomes smaller.) In the limit as the correlation length goes to infinity, the
length-normalized correlation goes to zero unless the frequencies match exactly. This is a
very important theoretical result in signals and systems.

Another special case occurs when we correlate over a common period of the target and
reference signals. This occurs when our correlation interval includes an integer number of
periods of both the target signal and reference signal. In this case, the correlation in equation
(3.42), for signals of different frequencies, is identically zero!®. Of course, the correlation
is not zero when the frequencies match. Note that this is the same condition required for
equation (3.29) to be exact.

It is worthwhile to note that all of these results apply to the discrete-time case as well.
In this case, we define the length-normalized correlation, C(s,c), as

~ C(s,c)

C(s,c) = b—ail (3.44)

~

C(s,c) again goes to zero as the quantity (b —a + 1) — oo when the reference and target
signals’ frequencies do not match. When the frequencies do match, C (s, ¢) remains constant.
In the discrete-time case as well, the correlation goes to zero when correlating over a common
period of both signals unless the frequencies match exactly.

How does all of this help us to determine the frequency of the target sinusoid? The
answer is perhaps less elegant than one might hope; basically, we “guess and check”. If
we have no prior knowledge about possible frequencies for the sinusoid, we need to check
the correlation with complex exponentials having a variety of frequencies. Then, whichever
complex exponential yields the highest correlation, we take the frequency of that complex
exponential as our estimate of the frequency of the target signal. In the next section, we
will formalize this algorithm for the discrete-time case.

A frequency identification algorithm

Suppose that we have a discrete-time target sinusoid s[n] with unknown amplitude, fre-
quency, and phase. Let the length of s[n] be N; we will calculate the length-normalized

8 The University of Michigan, All rights reserved
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Signal vector Frequency, ——— Frequency
Amplitude, and [—— Amplitude
Support vector Phase Estimator [——  Phase
(FAPE) . Vector of
Correlations

Figure 3.3: System diagram for the “frequency, amplitude, and phase estimator.”

correlation over this entire length. Since we would like to be correlating over an integral
number of periods of our reference signal (so that we can take advantage of the “com-

mon period” property if possible), we’ll select frequencies of the form & = % where!!
k=1,2,3,..., L%J This selection of frequencies provides us with uniform coverage of all

possible frequencies in the range [0, 7], while not exceeding this range. Further, N con-
tains an integral number of periods (k periods, in fact) of the periodic signals with these
frequencies.

For simplicity, let us store the correlations that we calculate in another discrete-time sig-
nal, X. Specifically, let X[k] be the length-normalized correlation for the reference complex

exponential with frequency %, calculated as

N
X[k] = %Z sle 7GRN g =1,2,3,..., {%J (3.45)
n=0

Remember that X[k] will generally be complex. To estimate the frequency of the target
sinusoid, we simply identify value, k4., of k for which | X [k]| is highest. Then, our estimated
frequency, Weq, is given by

21k maqn

N

Now that we have an estimated frequency, we should also be able to estimate the am-
plitude and phase as well. In fact, we have almost calculated these estimates already. They
are:

West =

(3.46)

A
¢

There is one problem here, however. Previously, we needed to know the frequency exactly
to determine the amplitude and phase; now, we only know the frequency approximately. In
the laboratory assignment, we will see the effect of this approximation.

In the laboratory assignment, we will be developing a system that can automatically esti-
mate the amplitude, phase, and frequency of a sinusoid. A block diagram of the “frequency,
amplitude, and phase estimator” (FAPE) system is given in Figure 3.3. Unlike the APC,
this system takes only two input parameters: a signal vector and the corresponding support
vector. Further, the support vector must contain only integers; that is, this system does
not accept sampled continuous-time signals. The system has four output parameters. The
first three are the estimates of the frequency, amplitude, and phase of the input sinusoid.

2| X [kmaz]| (3.47)
angle(X [kmaz)]) (3.48)

Q

Q

1 |-| indicates the greatest integer or floor function. Basically, we want k to be an integer, but it cannot

exceed % .
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The fourth is the vector of correlations examined by the function, X[k]. It is often useful
to examine this vector to get a sense of what the system is doing.

3.3 Some MATLAB commands for this lab

10

e Constructing complex numbers: MATLAB represents all complex numbers in rect-

angular form. To enter a complex number, simply type 5 + 6+*j (for instance). Note
that both i and j are used to represent v/1 (unless you have used one or the other as
some other variable). To enter a complex number in polar form, type 2*exp (j*pi/3)
(for instance).

You may be wondering how MATLAB actually works with complex numbers, given
that complex numbers are, in general, the sum of a real number and an imaginary
one. The point is that the imaginary component of a complex number is in fact a real
number, which MATLAB stores in the usual way. It thinks of a complex number as a
pair of floating point numbers, one to be interpreted as the real part and the other to
be interpreted as the imaginary part. And it knows the rules of arithmetic to apply
to such pairs of numbers in order to do what complex arithmetic is supposed to do.

Extracting parts of complex numbers: If z contains a complex number (or an
array of complex numbers), you can find the real and imaginary parts using the com-
mands real(z) and imag(z), respectively. You can obtain the magnitude and angle
of a complex number (or an array of complex numbers) using the commands abs (z)
and angle(z), respectively.

Complex conjugation: To compute the complex conjugate of a value (or array) z,
simply use the MATLAB command conj(z).

Building discrete-time sinusoids: To construct a discrete-time sinusoid in MAT-
LAB, you first need to define a support vector. For instance, you might want the
support vector to extend from 0 to 99, in which case you can use the command

>>n = 0:99;

Then, you can create the sinusoid’s signal vector. If you want A = 2, &y = 7/8, and
¢ = 27 /3, for instance, you would use the command:

>> s = 2xcos(pi/8*n + 2%pi/3);

Building discrete-time complex exponential signals: The process for creating
a complex exponential in MATLAB is basically identical to the process for creating
discrete time sinusoids:

>>n
>> c

0:99;
2%exp (j*(pi/8*n + 2*pi/3));

Finding the index of the maximum value in a vector: Sometimes we don’t just
want to find the maximum value in a vector; instead, we need to know where that
maximum value is located. The max command will do this for us. If v is a vector and
you use the command

The University of Michigan, All rights reserved
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>> [max_value, index] = max(v);

the variable max_value will contain largest value in the vector, and index contains
position of max_value in v.

MATLAB commands to help you visually determine the amplitude, fre-
quency, and phase of a sinusoid: Sometimes you may need to determine the
frequency, phase, and amplitude of a sinusoid from a MATLAB plot. In these cases,
there three commands that are quite useful. First, the command grid on provides
includes a reference grid on the plot; this makes it easier to see where the sinusoid
crosses zero (for instance). The zoom command is also useful, since you can drag
a zoom box to zoom in on any part of the sinusoid. Finally, you can use axis in
conjunction with zoom to find the period of the signal. To do so, simply zoom in on
exactly one period of the signal and type axis. MATLAB will return the current axis
limits as [x_min, x_max, y_min, y_max].

3.4 Demonstrations in the Lab Section

Complex Numbers in MATLAB

Sinusoids and complex exponentials in MATLAB
Sinusoidal correlation: matching frequencies
Sinusoidal correlation: different frequencies

FAPE: the Frequency, Amplitude, and Phase Estimator

3.5 Laboratory Assignment

1.

Execute the following commands:

>> t = linspace(-0.5, 2, 1000);
>> plot(t,cos(linspace(-7.5,27,1000)), 'k:"');

(a) Visually identify the amplitude, frequency, and phase of the continuous-time
(sampled) sinusoid that you’ve just plotted.

e [4] Include your estimated values in your report. Reduce your answers to
decimal form.

e [3] What is the phasor that corresponds to this sinusoid? Write it in both
rectangular and polar form. (Again, keep your answers in decimal form. You
should use MATLAB to perform these calculations.)

(b) Verify your answers in the previous problem by generating a sinusoid using those
parameters and plotting them on the above graph using hold on. Use t as your
time axis/support vector. The new plot should be close to the original, but it
does not need to be exactly correct.

e [3] Include the resulting graph in your report. Remember to include a legend.
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2. Download the file apc.m. This is a “skeleton” M-file for the function apc, which imple-
ments the “amplitude and phase calculator” described in Section 3.2.3. Also, generate
the following discrete-time sinusoid (s_test) with its support vector (n_test):

>> n_test
>> s_test

0:99;
1.3*%cos(n_test*pi/10 + 2.8);

(a) What are the amplitude, frequency, and phase of s_test?
e [2] Include your answers in your lab report.

(b) Complete the function apc. You can use the signal s_test to test the operation of
your function. You may also wish to use the compiled function apc_demo.d11'?
to test your results on other sinusoids.

e [10] Include the code for apc in your MATLAB appendix.

(¢) Download the file 1ab3_data.mat. This .mat file contains the support vector
(t_samp) and signal vector (s_samp) for a sampled continuous-time sinusoid with
frequency wg = 2007.

e [2] From t_samp, determine the sampling frequency of this signal.
e [3] Use apc to determine the amplitude and phase of the sinusoid exactly.

(d) Now we would like to investigate the behavior of apc in cases when we do not cor-
relate over exactly an integral number of periods of the target sinusoid. Generate
the following sinusoid:

>> apc_support = 0:80;
>> apc_test = cos(apc_support*pi/15);

This is a sinusoid with a frequency of wy = unit amplitude, and zero phase

shift.
e [2] Plot apc_test and include the plot in your report.

I
157

]
e [2] What is the fundamental period of apc_test in samples?
e [2] Approximately how many periods are included in apc_test?
]

e [2] Use apc to estimate the amplitude and phase of this sinusoid. What are
the amplitude and phase errors for this signal?

(e) Now we wish to examine a large number of different lengths of this sinusoid.
You will do this by writing a for loop that repeats the previous part for many
different values of the length of the incoming sinusoid. Specifically, write a for
loop with loop counter support_length ranging over 10:500. In each iteration
of the loop, you should

i. Set apc_support equal to 0: (support_lengthl)-,

ii. Recalculate apc_test using the new apc_support,
iii. Use apc to estimate the amplitude and phase of apc_test, and
iv. Store these estimates in two separate vectors.

Put your code in an M-file script so that you can run it easily.

e [8] Include your code in the MATLAB appendix.

12Note that apc_demo.dll will not work on inputs with non-integer support vectors.
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e [4] Use subplot to plot the amplitude and phase estimates as a function of
support length in two subplots of the same figure. You should be able to
see both local oscillation of the estimates and a global decrease in error with
increased support length.

e [3] At what support lengths are the amplitude estimates correct (i.e., equal
to 1)?

e [3] What minimum support length do we need to be sure that the phase error
is less than 0.01 radians?

3. Download the file fape.m. This is a “skeleton” M-file for the function fape, which im-
plements the “frequency, amplitude, and phase estimator” system described in Section
3.2.4.

(a) Complete the fape function. You can use n_test and s_test from Problem 2
along with the compiled fape_demo.d11 to check your function’s results.

e [16] Include the completed code in your report’s MATLAB appendix.
e [2] What are the frequency, amplitude, and phase estimates returned by fape
for n_test and s_test? Are these estimates correct?

e [3] Use stem and abs to plot the magnitude of the vector of correlations
returned by fape versus the associated frequencies.

e [3] What do you notice about this plot? What can you deduce from this
fact? (Hint: Consider what this plot tells you about the input signal and the
returned estimates.)

(b) lab3_data.mat contains the variables fape_test_n (a support vector) and fape_test_s
(its associated sinusoidal signal). Run fape on this signal.
e [3] What are the frequency, amplitude, and phase estimates that are re-
turned?
e [3] Use stem and abs to plot the magnitude of the returned vector of corre-
lations.

e [3] Plot fape_test_s and a new sinusoid that you generate from the param-
eter estimates returned by FAPE on the same figure (using hold on). Use
fape_test_n as the support vector for the new sinusoid. Make sure you use
different line types and include a legend.

e [2] What can you say about the accuracy of estimates returned by FAPE?
(c) Finally, we would like to examine the error characteristics of fape in more detail,
as we did with apc. We will use the following sinusoid:

>> fape_support = 0:N;
>> fape_test = cos(fape_support*0.4);

where we will vary N throughout the problem. Note in particular that fape_test

is not truly periodic in discrete-time.
Generate fape_test for N = 50, 100, 170, and 275. Run fape on each signal.

e [4] Use stem and subplot to plot the resulting correlation vectors for each
signal in separate subplots of the same figure. (Make sure you indicate which
subplot is associated with which value of N.)
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e [4] What are the corresponding frequency, amplitude, and phase estimates?
(Put your estimates into a table in your report.)

e [4] What can you say about the accuracy of fape for each type of parameter?
(Hint: There is a strong relationship between the error for each of the three
parameters. Do the errors generally decrease as N increases? What range of
values do the estimates take on? You should examine some other value of N
or, better yet, consider plotting the parameters versus N over some range.)
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