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Laboratory # 4

Fourier Series and the DFT

4.1 Introduction

As emphasized in the previous lab, sinusoids are an important part of signal analysis. We
noted that many signals that occur in the real world are composed of sinusoids. For example,
many musical signals can be approximately described as sums of sinusoids, as can some
speech sounds (vowels in particular). It turns out that any periodic signal can be written
exactly as a sum of amplitude-scaled and phase-shifted sinusoids. Equivalently, we can use
Euler’s inverse formulas to write periodic signals as sums of complex exponentials. This
is a mathematically more convenient description, and the one that we will adopt in this
laboratory and, indeed, in the rest of this course. The description of a signal as a sum of
sinusoids or complex exponentials is known as the spectrum of the signal.

Why do we need another representation for a signal? Isn’t the usual time-domain rep-
resentation enough? It turns out that spectral (or frequency-domain) representations of
signals have many important properties. First, a frequency-domain representation may be
simpler than a time-domain representation, especially in cases where we cannot write an
analytic expression for the signal. Second, a frequency-domain representation of a signal
can often tell us things about the signal that we would not know from just the time-domain
signal. Third, a signal’s spectrum provides a simple way to describe the effect of certain
systems (like filters) on that signal. There are many more uses for frequency-domain repre-
sentations of a signal, and we will examine many of them throughout this course. Spectral
representations are one of the most central ideas in signals and systems theory, and can also
be one of the trickiest to understand.

Consider the following problem. Suppose that we have a signal that is actually the sum
of two different signals. Further, suppose that we would like to separate one signal from the
other, but the signals overlap in time. If the signals have frequency-domain representations
that do not overlap, it is still possible to separate the two signals. In this way, we can see
that frequency-domain representations provide another “dimension” to our understanding
of signals.

In this laboratory, we will examine two tools that allow us to use spectral representations.
The Fourier Series is a tool that we use to work with spectral representations of periodic
continuous-time signals. The Discrete Fourier Transform (DFT) is an analogous tool for
periodic discrete-time signals. Each of these tools allow both analysis (the determination
of the spectrum of the time-domain signal) and synthesis (the reconstruction of the time-
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domain signal from its spectrum). Though you may not be aware of it, you have already
performed DFT analysis; the “frequency, amplitude, and phase estimator” system that you
implemented in Laboratory #3 actually performs DFT analysis.

4.1.1 “The Questions”

• How can we determine the spectral content of signals?

• How can we separate signals that overlap in time?

4.2 Background

4.2.1 Frequency-domain representations

So far, we have typically thought of signals as time-varying quantities, like s(t). When
we plot these signals, we generally place time along the horizontal axis and signal value
along the vertical axis. The idea behind the frequency-domain representation of a signal
is similar. Rather than plotting signal value versus time, we plot a spectral value versus
frequency. Doing this involves a transformation of the signal. Figure 4.1 shows an example
of a time-domain and frequency-domain representation of a signal. Note that we can think
of the result of the transform as a signal as well, a signal whose independent variable is
frequency rather than time.

The frequency domain representation of a signal (i.e., its spectrum) is easy to construct
when the signal is composed of a sum of simple complex exponential signals. In this case,
the spectrum consists of a few isolated spectral lines (“spikes”) on the frequency axis at
the frequencies of those complex exponentials. These spectral lines are complex-valued, and
their magnitudes and angles equal the amplitudes and phases of the corresponding complex
exponentials. Alternatively, we may draw two separate spectral line plots — one showing
the magnitude and the other showing their angles.

If we add more complex exponentials to our signal, then we simply add more spectral lines
to its frequency-domain representation. Eventually, if we add enough complex exponentials
(possibly an infinite number), we can create any signal that we might want. This includes
signals that do not look very sinusoidal, like square waves and sawtooth waves. We will use
this result for periodic signals in this laboratory. Though we will not study it here, it is also
possible to create non-periodic and finite-length signals from sums of complex exponentials1.

1This technique involves the Fourier Transform, which should not be confused with the Discrete Fourier
Transform that we use in this lab.

(a) (b)
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ω

Figure 4.1: A time-domain (a) and frequency-domain (b) representation of the same signal.
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4.2.2 Periodic Continuous-Time Signals — The Fourier Series

Suppose that we have a periodic continuous-time signal s(t) with fundamental period T0

seconds. We have claimed that any such signal can be represented as a sum of complex
exponential signals. We now assert that these complex exponentials have harmonically
related frequencies. Specifically, their frequencies (in radians per second) form a harmonic
series

. . . ,−3ω0,−2ω0,−ω0, 0, ω0, 2ω0, 3ω0, . . . , (4.1)

where
ω0 =

2π
T0

(4.2)

is the fundamental frequency. The frequency kω0, k ≥ 2, is called the k-th harmonic of the
fundamental frequency, or the k-th harmonic frequency for short.

Next we assert that the representation of s(t) in terms of complex exponentials with
these frequencies is given by the Fourier Series synthesis formula2:

s(t) = . . . C−2e
j

2π(−2)
T0

t + C−1e
j

2π(−1)
T0

t + C0e
j 2π0

T0
t + C1e

j 2π1
T0

t + C2e
j 2π2

T0
t + . . .

=
∞∑

k=−∞
Ckej 2πk

T0
t , (4.3)

where the Ck’s, which are called Fourier coefficients. The Fourier coefficients are determined
by the Fourier series analysis formula

Ck =
1
T0

∫
〈T0〉

s(t)e−j 2πk
T0

tdt , (4.4)

where
∫
〈T0〉 indicates an integral over any T0 second interval3. In other words, the Fourier

synthesis formula shows that the complex exponential component of s(t) at frequency 2πk
T0

is
Ckej 2πk

T0
t . (4.5)

Similarly, the Fourier analysis formula shows how the complex exponential components can
be determined from s(t), even when no exponential components are evident.

In general, the Fourier coefficients, i.e. the Ck’s, are complex. Thus, they have a
magnitude |Ck| and a phase or angle ∠Ck. The magnitude |Ck| can be viewed as the
strength of the exponential component at frequency kω0 = 2πk/T0, while the angle ∠Ck

gives the phase of that component. The coefficient C0 is the DC term; it measures the
average value of the signal over one period.

Once we know the Ck’s, the spectrum of s(t) is simply a plot consisting of spectral lines
at frequencies . . . ,−2ω0,−ω0, 0, ω0, 2ω0, . . .. The spectral line at frequency kω0 is drawn
with height indicating the magnitude |Ck| and is labeled with the complex value of Ck.
Alternatively, two separate spectral line plots can be drawn — one showing the |Ck|’s and
the other showing the ∠Ck’s.

2This is the exponential form of the Fourier series synthesis formula. There is also a sinusoidal form,
which is presented later in this section.

3Because s(t)e
−j 2πk

T0
t
is periodic with period T0, this integral evaluates to the same value for any interval

of length T0.
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Notice that the Fourier synthesis formula is very similar to the formula given in Lab #3
for the correlation between a sinusoid and a complex exponential. Indeed it has the same
interpretation: in computing Ck we are computing the correlation4 between the signal s(t)
and a complex exponential with frequency 2πk/T0. Thought of another way, this correlation
gives us an indication of how much of a particular complex exponential is contained in the
signal s(t).

Partial Series

Notice the infinite limits of summation in the synthesis formula (4.3). This tells us that, for
the general case, we need an infinite number of complex exponentials to represent our signal.
However, in practical situations, such as in this lab assignment, when we use the synthesis
formula to determine signal values, we can generally only include a finite number of terms
in the sum. For example, if we use only the first N positive and negative frequencies plus
the DC term (at k = 0), our approximate synthesis equation becomes

s(t) ≈
N∑

k=−N

Ckej 2πk
T0

t . (4.6)

Fortunately, Fourier series theory shows that this approximation becomes better and better5

as N −→ ∞. Alternatively, it is known that the mean-squared value of the difference
between s(t) and the approximation tends to zero as N −→ ∞. How large must N be for
the approximation to be good? There is no simple answer. However, you will gain some
idea by the experiments you perform in this lab assignment.

T -Second Fourier Series

It often happens that we wish to perform spectral analysis/synthesis of two or more periodic
signals that have different fundamental periods. We could of course form a separate Fourier
series for each signal. In this case, each Fourier series will be based on a different harmonic
series of frequencies. Wouldn’t it be nicer if we could base each series on a common harmonic
series of frequencies? It turns out that when a signal has fundamental frequency T0, it is
possible to perform Fourier series analysis/synthesis with T0 replaced by any T that is a
multiple of T0. Thus if we have two signals with fundamental periods T0 and T ′

0, respectively,
we can perform Fourier series analysis/synthesis with T0 replaced by any common multiple
of T0 and T ′

0, which yields a representation of each signal in terms of a common harmonic
series of frequencies.

To see how this comes about, recall that a signal s(t) with fundamental period T0 is also
periodic with period T = 2T0 or, more generally, with period T = nT0 for every positive
integer n. Because of this, we can perform Fourier series analysis/synthesis with T0 replaced
by any T that is a multiple of T0. That is, if T is a multiple of T0, then we also have the
Fourier synthesis formula

s(t) =
∞∑

k=−∞
C ′

kej 2πk
T t , (4.7)

4Actually, here we are computing what we called the length normalized correlation.
5It is known that under rather benign assumptions about the signal s(t), the approximation converges to

s(t) as N −→ ∞ at all times t where s(t) is continuous, and at times t where s(t) has a jump discontinuity, the
approximation converges to the average of the values immediately to the left and right of the discontinuity.
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where the C ′
k’s are the Fourier coefficients determined by the Fourier series analysis formula

C ′
k =

1
T

∫
〈T 〉

s(t)e−j 2πk
T tdt , (4.8)

and where we have added a ′ to the Ck’s to distinguish the new ones from the old ones.
What is the relationship between this new Fourier series and the original one. Let us

illustrate with the case of T = 2T0. Basically the idea is that with T = 2T0 the new Fourier
series represents s(t) as the sum of complex exponentials with frequencies

. . . ,−2ω′
0,−ω′

0, 0, ω
′
0, 2ω

′
0, . . . = . . . ,−ω0,−ω0

2
, 0,

ω0

2
, ω0, . . . , (4.9)

where
ω′

0 =
2π
T

=
2π
2T0

=
ω0

2
. (4.10)

We see that the new series decomposes s(t) into frequency components whose separation
has been halved. However, since s(t) is actually periodic with period T0 = T/2, it actually
has frequency components only at frequencies

. . . ,−2ω0,−ω0, 0, ω0, 2ω0, . . . . (4.11)

Therefore, what happens is that every other C ′
k is zero and the nonzero ones are the same

as those of the original Fourier series. That is,

C ′
k =

{
Ck/2, k even
0, k odd (4.12)

In summary, Fourier series analysis/synthesis can be performed over one fundamental
period or over any number of fundamental periods. Usually, when Fourier series is men-
tioned, the desired number of periods interval will be clear from context. However, when it
is essential to precisely specify the desired period we will speak of a T -second Fourier series
or an n-fundamental period Fourier series.

Aperiodic Continuous-Time Signals

Next, we briefly discuss how Fourier series can also be applied when the signal s(t) is not
periodic. In this case, we can nevertheless determine the spectrum of a finite segment of the
signal, say from time t1 to time t2, by performing Fourier series analysis/synthesis on just
this segment. That is, if we find Fourier coefficients

Ck =
1
T

∫ t2

t1

s(t)e−j 2πk
T tdt , (4.13)

where T = t2 − t1, then we have

s(t) =
∞∑

k=−∞
Ckej 2πk

T t , for t1 ≤ t ≤ t2 . (4.14)

This will give us an idea of the frequency content of the signal during the given time interval.
It is important to emphasize, however, that the synthesis equation (4.14) is valid only when t
is between t1 and t2. Outside of this time interval, the synthesis formula will not necessarily
equal s(t). Instead, it describes a signal that is periodic with period T , called the periodic
extension of the segment between t1 and t2.
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Properties of the Fourier Coefficients

We conclude our discussion of the Fourier series with a list of useful properties, some of
which have already been mentioned. A few of these will be useful in this lab assignment.
The rest are included for completeness. These properties are stated without derivations.
However, each can be derived straightforwardly from the analysis and synthesis formulas.
Though not required in this laboratory, you may want to confirm some of these properties
using the Fourier analysis and synthesis programs described in Section 4.4.

1. (Fourier series analysis) The T -second Fourier series analysis of a periodic signal s(t)
with period T produces a set of Fourier coefficients Ck, k = . . . ,−2,−1, 0, 0, 1, 2, . . .,
which are, in general, complex valued.

2. (Frequency components) If Ck are the coefficients of the T -second Fourier series of the
periodic signal s(t) with period T , then the frequency or spectral component of s(t)
at frequency 2πk

T is Ckej 2πk
T t.

3. (DC component) The coefficient C0 equals the average or DC value of s(t).

4. (One-to-one relationship) There is a one-to-one relationship between periodic signals
and Fourier coefficients. Specifically, if s(t) and s′(t) are distinct6 periodic signals,
each periodic with period T , then their T -second Fourier coefficients are not entirely
identical, i.e. Ck 	= C ′

k for at least one k. It follows that one can recognize a periodic
signal from its Fourier coefficients (and its period).

5. (Conjugate symmetry) If s(t) is a real-valued signal, i.e. its imaginary part is zero,
then for any integer k

C−k = C∗
k (4.15)

|C−k| = |Ck| (4.16)
∠C−k = −∠Ck . (4.17)

6. (Linear combinations) If s(t) and s′(t) have T -second Fourier coefficients Ck and C ′
k,

respectively, then as(t) + bs′(t) has T -second Fourier coefficients aCk + bC ′
k.

7. (Fourier series of elementary signals) The following lists the T -second Fourier coeffi-
cients of some elementary signals.

(a) Complex exponential signal: s(t) = ej 2πm
T t =⇒

Ck =
{

1, k = m
0, k 	= m

. (4.18)

6By “distinct”, we mean that s(t) and s′(t) are sufficiently different that s(t) �= s′(t) for all times t
in some interval with (t1, t2), with nonzero length. They are not “distinct” if they differ only at a set of
isolated points. To see why we need this clarification, observe that if s(t) and s′(t) differ only at time t1,
then they have the same Fourier coefficients, because integrals, such as those defining Fourier coefficients,
are not affected by changes to their integrands at isolated points. Likewise, s(t) and s′(t) will have the same
Fourier coefficients if they differ only at isolated times t1, t2, . . .. However, if s(t) �= s′(t) for all t in an entire
interval, no matter how small, then Ck �= C′

k for at least one k.

6 The University of Michigan, All rights reserved
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(b) Cosine: s(t) = cos( 2πm
T t) =⇒

Ck =
{

1
2 , k = ±m
0, k 	= ±m

. (4.19)

(c) Sine: s(t) = sin(2πm
T t) =⇒

Ck =


− j

2 , k = m
j
2 , k = −m
0, k 	= ±m

. (4.20)

(d) General sinusoid: s(t) = cos( 2πm
T t + φ) =⇒

Ck =


1
2ejφ, k = m
1
2e−jφ, k = −m
0, k 	= ±m

. (4.21)

8. (Conjugate pairs) If Ck’s are the T -second Fourier coefficients for a real-valued signal
s(t), then for any k the sum of the complex exponential components of s(t) corre-
sponding to Ck and C−k is a sinusoid at frequency 2πk/T . Specifically, using the
inverse Euler relation,

Ckej 2πk
T t + C−ke−j 2πk

T t = 2|Ck| cos(2πk

T
t+ ∠Ck) . (4.22)

9. (Sinusoidal form of the Fourier synthesis formula) The previous property leads to the
sinusoidal form of the Fourier synthesis formula:

s(t) = C0 +
∞∑

k=−∞
2|Ck| cos(2πk

T
t + ∠Ck) . (4.23)

10. (T -second Fourier series) If a periodic signal s(t) has fundamental period T0 and T0-
second Fourier coefficients Ck, then the nT0-second Fourier coefficients are

C ′
k =

{
Ck/n, k = multiple of n
0, else (4.24)

11. (Time shifting) If Ck’s are the T -second Fourier coefficients for signal s(t), then the
T -second Fourier coefficients for s′(t) = s(t − t1) are

C ′
k = Cke−j 2πk

T t1 . (4.25)

12. (Time scaling) If Ck’s are the T -second Fourier coefficients for signal s(t), then the
T/a-second Fourier coefficients for s′(t) = s(at) are

C ′
k = Ck , (4.26)

That is, they are the same. Note, however, that the spectrum changes because the
fundamental frequency, which is the spacing between spectral lines, changes. This
property shows that if a signal is time-scaled to have shorter fundamental period, then
its spectrum becomes broader, i.e. it has more high frequency content. Conversely,
if a signal is time-scaled to have a longer fundamental period, its spectrum becomes
narrower, i.e. concentrated more at low frequencies.
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13. (Multiplication by exponential) If Ck’s are the T -second Fourier coefficients for signal
s(t), then the T -second Fourier coefficients for s′(t) = s(t)ej 2πm

T t are

C ′
k = Ck−m . (4.27)

This property shows that multiplying by a complex exponential has a frequency shift-
ing effect.

14. (Parseval’s relation) If Ck’s are the T -second Fourier coefficients for signal s(t), then
the mean-squared value of s(t), equivalently the power, equals the sum of the squared
magnitudes of the Fourier coefficients. That is,

MS(s) =
1
T

∫
〈T 〉

|s(t)|2 dt =
∞∑

k=−∞
|Ck|2 (4.28)

15. (Mean-squared error property) If Ck’s are the T -second Fourier coefficients for signal
s(t), then for any N , the mean-squared error between s(t) and the Fourier series
approximation with 2N + 1 terms equals the difference between the mean-squared
value of s(t) and the sum of the squared magnitudes of the 2N + 1 Ck’s. That is,

MS

(
s(t)−

N∑
k=−N

Ckej 2πk
T t

)
= MS(s(t))−

N∑
k=−N

|Ck|2 . (4.29)

16. (Uncorrelatedness/orthogonality of complex exponentials) The T -second correlation
between complex exponential signals ej 2πm

T t and ej 2πn
T t, m 	= n, is zero. This property

is used in the derivation of the previous two.

4.2.3 Periodic Discrete-Time Signals — The Discrete Fourier Trans-
form

Consider a periodic discrete-time signal s[n] with fundamental periodN0. As with continuous-
time signals, we wish to find its frequency domain representation, i.e. its spectrum. That
is, we wish to represent s[n] as a sum of discrete-time complex exponential signals. Again,
we will use frequencies that are multiples of the fundamental frequency, which in this case
is

ω̂0 =
2π
N0

. (4.30)

However, unlike the continuous-time case, we now use only a finite number of such frequen-
cies. Specifically, we use the N0 harmonically related frequencies:

0, ω̂0, 2ω̂0, . . . , (N0 − 1)ω̂0 . (4.31)

The reason is that any complex exponential signal with the frequency kω̂0 is in fact identical
to a complex exponential signal with one of the N0 frequencies listed above7. Notice that
this set of frequencies ranges from 0 to 2π(N0−1)

N0
, which is just a little less than 2π.

7If kω̂0 is not in this range, then k = mN0 + l where m �= 0 and 0 ≤ l < N0. It then follows that the

complex exponential with this frequency is e
j 2πk

N0
n
= e

j
2π(mN0+l)

N0
n
= ej2πmne

j 2πl
N0

n
= e

j 2πl
N0

n
, which is an

exponential with one of the N0 frequencies in the list above.
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We now assert that the representation of s[n] in terms of complex exponentials with the
abovementioned frequencies is given by the discrete-time Fourier series synthesis formula
or as we will usually call it, the the Discrete Fourier Transform (DFT) synthesis formula

s[n] = S[0]ej 2π0
N0

n + S[1]ej 2π1
N0

n + S[2]ej 2π2
N0

n + . . . + S[N0 − 1]ej
2π(N0−1)

N0
n

=
N0−1∑
k=0

S[k]ej 2πk
N0

n , (4.32)

where the S[k]’s, which are called DFT coefficients, are determined by the DFT analysis
formula

S[k] =
1

N0

∑
〈N0〉

s[n]e−j 2πk
N0

n , k = 0, 1, 2, 3, . . . , N0 − 1 (4.33)

where 〈N0〉 indicates a sum over any N0 consecutive integers, e.g. the sum over 0, . . . , N0.
(Because s[n]e−j 2πk

N0
n is periodic with period N0, the sum is the same for any choice of N0

consecutive integers.)
As with the continuous-time Fourier series, the DFT coefficients are, in general, complex.

Thus, they have a magnitude |S[k]| and a phase or angle ∠S[k]. The magnitude |S[k]| can
be viewed as the strength of the exponential component at frequency kω̂0 = 2πk/N0, while
∠S[k] is the phase of that component. The coefficient S[0] is the DC term; it measures the
average value of the signal over one period.

Once we know the S[k]’s, the spectrum of s[n] is simply a plot consisting of spectral
lines at frequencies 0, ω̂0, 2ω̂0, . . . , (N0 − 1)ω̂0. The spectral line at frequency kω̂0 is drawn
with height indicating the magnitude |S[k]| and is labeled with the complex value of S[k].
Alternatively, two separate spectral line plots can be drawn — one showing the |S[k]|’s and
the other showing the ∠S[k]’s.

Since the sums in the synthesis and analysis formulas are finite, there are no convergence-
of-partial-sum issues, such as those that arise for the continuous-time Fourier series.

Often the DFT coefficients S[0], . . . , S[N0] are said to be the “DFT of the signal s[n]”
and the process of computing them via the analysis equation (4.33) is called “taking the
DFT” of s[n]. Conversely, applying the synthesis equation (4.32) is often called “taking the
inverse DFT” of S[0], . . . , S[N0].

Notice that the DFT analysis formula (4.33) is identical to equation (3.45) in Lab 3.
That is, in computing the set of correlations between a signal s[n] and the various complex
exponentials in Lab 3, we were actually taking the DFT of s[n]. Indeed, it continues to be
helpful to view the DFT analysis as the process of correlating s[n] with various complex ex-
ponentials. Those correlations that lead to larger magnitude coefficients indicate frequencies
where the signal has larger components.

In some treatments, the DFT analysis and synthesis formulas differ slightly from those
given above in that the 1/N factor is moved from the analysis formula to the synthesis
formula8, or replaced by a 1/

√
N factor multiplying each formula. All of these approaches

are equally valid. The choice between them is largely a matter of taste. For example,
our approach is the only one for which S[0] equals the average signal value. For the other
approaches, the average is S[0] multiplied by a known constant. The only cautionary note is
that one should never use the analysis formula from one version with the synthesis formula

8The DSP First textbook does this in Chapter 9.
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from another. In this course, we will always use the analysis and synthesis formulas shown
above.

Although we will always take 0, ω̂0, 2ω̂0, . . . , (N0 − 1)ω̂0 as the analysis frequencies pro-
duced by the DFT, it is important to point out that every frequency ω̂ in the upper half of
this range, i.e. between π and 2π, is equivalent to a frequency ω̂ − 2π, which lies between
−π and 0. By “equivalent,” we mean that a complex exponential with frequency ω̂ with
π < ω̂ < 2π equals the complex exponential with frequency ω̂ − 2π. Thus, it is often useful
to think of frequencies in the upper half of our designated range as representing frequencies
in the range −π to 0.

For example, let us look at the DFT of a sinusoidal signal, s[n] = cos(2πm
N0

n), with
0 < m < N0

2 . The DFT coefficients, S[k], are given by

(S[0], . . . , S[N0 − 1]) = (0, . . . , 0, 1/2, 0, . . . , 0, 1/2, 0, . . . , 0), (4.34)

where S[m] = S[N0 − m] = 1/2 and S[k] = 0 for other k’s. In the synthesis formula, the
coefficient S[m] multiplies the complex exponential ej 2πm

N0
n, and the coefficient S[N − m]

multiplies the complex exponential ej
2π(N−m)

N0
n = e−j 2πm

N0
n. Thus, these two coefficients can

be viewed as multiplying exponentials at frequencies ± 2πm
N0

, which by the inverse Euler
formula sum to yield s[n] = cos( 2πm

N0
n).

N-point DFT

For the same reasons as for continuous-time Fourier series, we often wish to perform DFT
analysis over an interval that consists of two or more fundamental periods. Thus if N is
a multiple of the fundamental period N0, the N -point DFT is defined by synthesis and
analsyis formulas obtained simply by replacing N0 with N . That is, the synthesis formula
is

s[n] =
N−1∑
k=0

S′[k]ej 2πk
N n , (4.35)

and the analysis formula is

S′[k] =
1
N

∑
〈N〉

s[n]e−j 2πk
N n , k = 0, 1, 2, 3, . . . , N − 1 (4.36)

where we have added a ′ to the S[k]’s to distinguish the new coefficients from the old. For
example, if N = 2N0, then the new DFT represents s[n] as the sum of complex exponentials
with frequencies

0, ω̂′
0, 2ω̂

′
0, . . . , (N − 1)ω̂′

0 = 0,
ω̂0

2
, ω̂0, . . . , (N − 1)

ω̂0

2
, (4.37)

where ω̂′
0 = ω̂0. We see that the separation between frequency components has been halved.

The relationship between the original and new coefficients is

S′[k] =
{

S[k/2], k even
0, k odd (4.38)

In summary, DFT analysis/synthesis can be performed over one fundamental period or
over any number of fundamental periods. Usually, when the DFT is mentioned, the desired
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number of periods interval will be clear from context. However, when it is essential to
precisely specify the desired period we will speak of an N -point DFT or an n-fundamental
period DFT.

Aperiodic Discrete-Time Signals

Next, we briefly discuss how the DFT can also be applied when the signal s[n] is not periodic.
In this case, we can nevertheless determine the spectrum of a finite segment of the signal,
say from time n1 to time n2, by performing DFT analysis/synthesis on just this segment.
That is, if we find DFT coefficients

S′[k] =
1
N

∑
〈N〉

s[n]e−j 2πk
N n , k = 0, 1, 2, 3, . . . , N − 1 (4.39)

where N = n2 − n1, then we have

s[n] =
N−1∑
k=0

S′[k]ej 2πk
N n , k = 0, 1, 2, 3, . . . , N − 1 . (4.40)

This will give us an idea of the frequency content of the signal during the given time interval.
It is important to emphasize, however, that the synthesis equation (4.40) is valid only at
times n from n1 to n2. Outside of this time interval, the synthesis formula will not necessarily
equal s[n]. Instead, it describes a signal that is periodic with period N , called the periodic
extension of the segment from n1 to n2.

Properties of the DFT coefficients

The following are a number of useful properties of the DFT with which you should be
familiar. A few of these will be useful in this lab assignment. Others will be used in
future assignments. These properties are stated without derivations. However, each can be
derived straightforwardly from the analysis and synthesis formulas. Though not required in
this laboratory, you may want to confirm some of these properties using the DFT analysis
and synthesis programs described in Section 4.4.

1. (DFT analysis) The N -point DFT of a periodic signal s[n] with period N produces a
vector of N DFT coefficients S[0], . . . , S[N −1], which are, in general, complex valued.
Equivalently, the coefficients may be considered to be determined by a set of N signal
samples.

2. (Frequency components) If S[k] is N -point DFT of the periodic signal s[n] with period
N , then the frequency or spectral component of s[n] at frequency 2πk

N is S[k]ej 2πk
N n.

The component of the signal at frequency −2πk
N is S[N − k]e−j 2πk

N N .

3. (DC component) The coefficient S[0] equals the average value or DC value of s[n].

4. (One-to-one relationship) There is a one-to-one relationship between discrete-time
signals with period N (equivalently, sequences of N signal samples) and sequences
of N DFT coefficients. Specifically, if s[n] and s′[n] are distinct periodic signals with
period N , i.e. s[n] 	= s′[n] for some value of n, then then their N -point DFT coefficients
are not entirely identical, i.e. S[k] 	= S′[k] for at least one k. It follows that one can
recognize a discrete-time periodic signal from its DFT coefficients (and T ).
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5. (Conjugate symmetry) If s[n] is a real-valued signal, i.e. its imaginary part is zero,
then for any integer k

S[N − k] = S∗[k] (4.41)
|S[N − k]| = |S[k]| (4.42)
∠S[N − k] = −∠S[k] . (4.43)

These facts indicate that we are usually only interested in the first half of the DFT
coefficients.

6. (Linear combinations) If s[n] and s′[n] have N -point DFT S[k] and S′[k], respectively,
then as[n] + bs′[n] has N -point DFT aS[k] + bS′[k].

7. (Sampled continuous-time signals) If the discrete-time signal s[n] comes from sampling
a continuous-time signal s(t) with sampling interval Ts, i.e. if s[n] = s(nTs), then
the continuous-time frequency represented by DFT coefficient S[k] is 2πk

N fs, where
fs = 1/Ts samples per second is the sampling rate.

8. (DFT of elementary signals) The following lists the N -point DFT of some elementary
signals.

(a) Complex exponential signal: s[n] = ej 2πm
N n =⇒

(S[0], . . . , S[N − 1]) = (0, . . . , 0, 1, 0, . . . , 0) , (4.44)

where the nonzero coefficient is S[m].

(b) Cosine: s[n] = cos
(

2πm
N n

)
=⇒

(S[0], . . . , S[N − 1]) = (0, . . . , 0,
1
2
, 0, . . . , 0,

1
2
, 0, . . . , 0) , (4.45)

where the nonzero coefficients are S[m] and S[N − m].

(c) Sine: s[n] = sin
(

2πm
N n

)
=⇒

(S[0], . . . , S[N − 1]) = (0, . . . , 0,− j

2
, 0, . . . , 0,

j

2
, 0, . . . , 0) , (4.46)

where the nonzero coefficients are S[m] and S[N − m].

(d) General sinusoid: s[n] = cos
(

2πm
N n + φ

)
=⇒

(S[0], . . . , S[N − 1]) = (0, . . . , 0,
1
2
ejφ, 0, . . . , 0,

1
2
e−jφ, 0, . . . , 0) , (4.47)

where the nonzero coefficients are S[m] and S[N − m].

(e) Not quite periodic sinusoid: s[n] = cos
(

2π(m+ε)
N n

)
where (m + ε) is non-integer

=⇒ The resulting S[k]’s will all be nonzero9, typically with small magnitudes
except those corresponding to frequencies closest to 2π(m+ε)

N .

9This is the same effect that you saw in lab #3 when you ran fape over a non-integer number of periods
of the sinusoid.
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(f) Period contains unit impulse period: s[n] = (1, 0, . . . , 0) =⇒

(S[0], . . . , S[N − 1]) =
(
1
N

, . . . ,
1
N

)
. (4.48)

9. (Conjugate pairs) If S[k] is the N -point DFT of a real-valued signal s[n], then for
any k the sum of the complex exponential components of s[n] corresponding to S[k]
and S[N − k] is a sinusoid at frequency 2πk/N . Specifically, using the inverse Euler
relation,

S[k]ej 2πk
N n + S[N − k]e−j 2πk

N n = 2|S[k]| cos(2πk

N
n+ ∠S[k]) . (4.49)

10. (N -point DFT) If S[k] is the N0-point DFT of the periodic signal s[n] with funda-
mental period N0, then the mN0-point DFT coefficients are

S[k] =
{

S[k/m], k = multiple of m
0, else (4.50)

11. (Time shifting) If S[k] is the N -point DFT of signal s[n], then the N -point DFT of
s′[n] = s[n − n1] is

S′[k] = S[k]e−j 2πk
N n1 . (4.51)

12. (Multiplication by exponential) If S[k] is the N -point DFT of s[n], then the N -point
DFT of s′[n] = s[n]ej 2πm

N n is
S′[k] = S[k − m] . (4.52)

This property shows that multiplying by a complex exponential has a frequency shift-
ing effect.

13. (Parseval’s relation) If S[k] is the N -point DFT of s[n], then

MS(x) =
1
N

∑
〈N〉

|s[n]|2 =
N−1∑
k=0

|S[k]|2 . (4.53)

This shows that the power in the signal s[n] equals the energy of the DFT coefficients.

14. (Uncorrelatedness/orthogonality of complex exponentials) The N -point correlation
between complex exponential signals ej 2πm

N n and ej 2πl
N n, m 	= l, is zero. This property

is used in the derivation of the previous one.

4.3 Separating Signals Based on Differing Harmonic Se-
ries

We’ve already suggested that there are many nearly-periodic signals the occur in the real
world, with two notable examples being many musical signals and vowels in speech signals.
These sort of signals can be analyzed using the Fourier Series or the DFT. In particular,
let us consider a note played on a musical instrument like a flute or clarinet. Such a signal
is nearly periodic with some fundamental period. If the note is played at “concert pitch,”
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for instance, it has a fundamental frequency of 440 Hz and a fundamental period of 1/440
seconds. Few musical signals, though, are purely sinusoidal. From our development of
the Fourier series, we know that a periodic signal can be described as a sum of complex
exponentials (or sinusoids) with harmonically-related frequencies. That is, the spectrum
of our musical note is composed of a harmonic series. In particular, if the fundamental
frequency is 440 Hz, higher harmonics will be at 880 Hz, 1320 Hz, 1760 Hz, and so on.

Suppose that we have two instruments playing different notes (i.e., the two signals have
different fundamental periods) at the same time. The signal coming from each instrument
is a single harmonic series, but a listener “hears” a signal which is the sum of these two
signals. By the linear combination properties of the Fourier Series and DFT, we know that
the spectrum of the combined signal is simply the sum of the spectra of the separate signals.
We can use this property to separate the two signals in the frequency-domain, even though
they overlap in the time-domain.

Suppose that we wish to simply remove one of the notes from the combined signal.
We’ll assume that we have recorded and sampled the signal, so we’re working in discrete-
time. We’ll also assume that the combined signal is also periodic10 with some (fairly long)
fundamental period N0. If we take the N0-point DFT of a segment of the combined signal,
we can identify the coefficients that make up each harmonic series. Then, we simply zero-out
all of the coefficients corresponding to the harmonics of the note we wish to remove. When
we resynthesize the signal with the inverse DFT, the resulting signal will contain only one
of the two notes.

We can extend this procedure to more complicated signals, like melodies with many
notes. In this case, we simply analyze and resynthesize each note individually. Of course,
with more simultaneously-sounding notes and more complicated music, this procedure be-
comes rather difficult. In this lab, we will implement this procedure to remove a “corrupting”
note held throughout a simple, easily analyzed melody. Though somewhat idealized, the
problem should help to motivate the use of the DFT and the frequency domain.

4.4 Some Matlab commands for this lab

• Fourier Series Synthesis in Matlab: The function fourier_synthesis is a func-
tion that we provide to compute the approximate T -second Fourier series synthesis
formula, equation (4.6). Its inputs are the period T and a set of 2N + 1 Fourier
coefficients. Its output is the synthesized signal. The calling command is

>> [ss,tt] = fourier_synthesis(CC, T, periods ,Ns);

where CC is a vector containing the Fourier coefficients, T is the period in seconds
over which the Fourier series is applied. periods is the (integer) number of periods
to include in the resynthesis; periods defaults to a value of 1 if not provided. The
optional parameter Ns specifies how many samples per period to include in the output
signal.

It is assumed that CC contains the coefficients C−N . . . CN . (N is implicitly determined
from the length of CC.) Thus, CC has length 2N + 1, the CC(n) element contains

10In the “real-world,” this is a somewhat questionable assumption. However, we can approximate this
behavior quite well by simply using a long DFT. In this case, each harmonic may be “spread” over several
DFT coefficients, so to remove a harmonic we need to zero-out all of coefficients associated with it. This
spreading behavior is the same as what you saw in Lab #3 when running fape over non-periodic signals.
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the Fourier series coefficient Cn−N−1. Further, note that the C0 coefficient falls at
CC(N+1).
The two returned parameters are the signal vector ss and the corresponding signal
support vector tt.

• Fourier Series Analysis in Matlab: The function fourier_analysis is the com-
plement to fourier_synthesis. It performs T -second Fourier series analysis on an
input signal. The calling command is

>> [CC,ww] = fourier_analysis(ss,T,N);

where ss is a vector containing the signal samples, T is the period T in seconds over
which the Fourier series is to be computed, and N is the number of positive harmonics
to include in the analysis. (2N+1 is the total number of harmonics.) It is assumed that
ss contains samples of the signal to be analyzed over the period [0, T ].
The outputs are the vectors CC, which contains the 2N + 1 Fourier coefficients11, and
ww, which contains the frequencies (in Hertz) associated with each Fourier coefficient.

• DFT Analysis in Matlab: In order to calculate an N -point DFT using Matlab,
we use the fft command12. The specific calling command is

>> XX = fft(xx)/length(xx);

This computes the N -point DFT of the signal vector xx , where N is the length of xx,
and where the signal is assumed to have support 0, 1, . . . , N − 1. Since the Matlab
command fft does not include the factor 1/N in the analysis formula, as in equation
(4.33), we must divide by length(xx) to obtain the N DFT coefficients XX.

• DFT Synthesis in Matlab: The synthesis equation for the DFT is computed with
the command ifft. If we have computed the DFT using the above command, we
must also remember to multiply the result by N :

>> xx = ifft(XX)*length(XX);

Note that the ifft command will generally return complex values even when the
synthesis should exactly be real. However, the imaginary part should be negligible
(i.e., less than 1 × 10−14). You can eliminate this imaginary part using the real
command.

• Indexing the DFT: Since Matlab begins its indexing from 1 rather than 0, remem-
ber to use the following rules for indexing the DFT:

X[0] ⇒ X(1)

X[1] ⇒ X(2)

X[k] ⇒ X(k+1)

X[N − k] ⇒ X(N-k+1)

X[N − 1] ⇒ X(N)

11Because fourier analysis is given only samples of the desired continuous-time signal, it cannot compute
the Fourier coefficients exactly. Rather it computes an approximation by using the DFT.

12FFT stands for the Fast Fourier Transform, which is a fast implementation of the DFT. Calculating the
DFT from its definition requires O(N2) computations, but the FFT only requires O(N logN). Additionally,
the FFT is faster for N equal to a power of two (i.e., N = 256, 512, 1024, 2048, etc.).
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4.5 Demonstrations in the Lab Section

• Approximating signals as sums of sinusoids

• “Mapping out” this week’s background section

• Relating the Fourier Series to the DFT

• T -second Fourier Series and the N -point DFT

• The DFT in Matlab

4.6 Laboratory Assignment

1. In this problem, you will “hand tune” the amplitudes and phases of three sinusoids so
that their sum matches a “target” periodic signal as well as possible. The signals are
considered to be continuous-time. One could do this task analytically or numerically
using the Fourier series analysis formula, but we want you to gain the insight that
results from doing it manually. A graphical Matlab program has been written to
facilitate this procedure.

Download the files sinsum.m and sinsum.fig and execute sinsum13. Matlab will
bring up a GUI window with three sinusoids (colored, dotted lines), the sum of these
three sinusoids (the black, dashed line), and a target periodic signal (the black, solid
line). The frequencies of the sinusoids are ω0, 2ω0, and 3ω0, where ω0 is the funda-
mental frequency of the target signal.

As stated earlier, the goal of this problem is to adjust the amplitudes and phases of the
three sinusoids to approximate the target signal as closely as possible. You can enter
the amplitude and phase for each sinusoid in the spaces provide in the GUI window,
or using the mouse, you can click-and-drag each sinusoid to change its amplitude and
phase. In addition to displaying the three sinusoids, their sum, and the target signal,
the GUI window also shows the mean-squared error between the sum and the target
signals.

Use sinsum.m to hand tune the amplitudes and phases of the three sinusoids to make
the mean-squared error as small as you can.

(Hint: You should be able achieve an MSE less than 0.24. You will receive +2 bonus
points if you can achieve an MSE less than 0.231.)

(Hint: In attempting to minimize the MSE you might try to adjust one sinusoid to
minimize the MSE, then another, then another. After doing all three, go back and see
if readjusting them in a “second round” has any benefits.)

• [20(+2)] Include the resulting figure window in your report. (On Windows sys-
tems, use the “Copy to Clipboard” button to copy the figure, then you can simply
paste it into a Word or similar document. There is also a “Print Figure” button
for other systems if you can’t get access to a PC.)

13Note that this function will only work under Matlab 6 and higher. It is highly recommend that you
use a Windows-based PC for this problem, since you need to copy the figure window into your report. Using
the Windows clipboard simplifies this task significantly.
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Food for thought14: Did you try the procedure suggested in the hint above, in which
you tune each sinusoid one at a time and then return to each for a “second round”
of tuning? If so, can you explain why the second round did or did not lead to any
improvements?

2. In this problem you will simply apply fourier_synthesis to a given set of Fourier co-
efficients and find the resulting continuous-time signal. Download the file fourier_synthesis.m.
Use it to generate an approximation to the signal with the following Fourier coeffi-
cients:

Ck =
{

− (
2

πk

)2
k = ±1,±3,±5, . . .

0 k = 0,±2,±4, . . . (4.54)

Let T = 0.1 seconds, and generate 5 periods of the signal. Use N = 20, giving you 41
Fourier series coefficients. (Hint: First, define a frequency support vector, kk=-20:20.
Then, generate CC from kk and set all even harmonics to zero.)

• [4] Use stem to plot the magnitude of the Fourier coefficients. Use your kk vector
as the x-axis.

• [3] Use plot to plot samples of the continuous-time signal that fourier_synthesis
returns.

• [2] What kind of signal is this?

3. In this problem you will use the Fourier series analysis and synthesis formula to see
how the accuracy of the approximate synthesis formula (4.6) depends on N .

Download the files lab4_data.mat and fourier_analysis.m. lab4_data.mat con-
tains the variables step_signal and step_time, which are the signal and support
vectors for the samples of a continuous-time periodic signal with fundamental period
T0 = 1 second. Note that there are Ns = 16384 samples in one fundamental period.
(step_signal and step_time include several fundamental periods, but you’ll be deal-
ing with only one period in several parts of this problem. As such, you might find it
useful to create a one-period version of step_signal.)

(a) First, let us examine step_signal.

• [3] Use plot to plot step_signal versus its support vector.
• [3] Compute the mean-squared value of step_signal.

(b) Use fourier_analysis to perform a T0 second Fourier series analysis over a
single period of step_signal with with N = 50.

• [4] Use subplot and stem to plot the magnitude and phase of the resulting
Fourier series coefficients. Make sure that your x-axis is given in frequency.

(c) Use fourier_analysis and fourier_synthesis to generate an approximations
of step_signal with N = 25, 50, 100, and 200. (Perform T0-second Fourier
analysis and synthesis over a single period of the signal for each N . Be sure to
resynthesize a single period with Ns = 16384 samples.)

14“Food for thought” items are not required to be read or acted upon. There is no extra credit for involved.
However, if you include something in your report, your GSI will read and comment on it. Alternatively, you
can discuss “food for thought topics” in office hours.
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• [4] Use plot and subplot to plot your resynthesized signals for each N in
separate panels of a subplot array.

• [3] Calculate the mean-squared error of the resynthesis for each value of N .
• [3] Compute the sum of the squared magnitudes of CC for each value of N .
• [3] Find and document a relationship between the mean-squared errors and
the sum of squared magnitudes of CC you have computed. (Hint: Consider
the mean-squared value that you computed for step_signal. You might
also want to look in the Properties of Fourier Coefficients subsection.)

(d) Find the smallest value of N for which the mean-squared error of the resynthesis
is less than 0.5% of the mean-squared value of step_signal.

• [4] Include this value in your report.

Food for thought: Try repeating Part (b) with the Fourier analysis performed over two
fundamental periods of the signal, and compare to the previous answer to Part (b). Do
the new Fourier coefficients turn out as expected?

4. In this problem, you will simply apply the DFT to a particular discrete-time signal,
which is also contained in lab4_data.mat, namely, signal_id. signal_id is con-
sidered to be a periodic discrete-time signal with fundamental period N0 = 128 =
length(signal_id). Take the N0-point DFT of signal_id.

• [3] Use stem to plot the magnitude of the DFT versus the DFT coefficient index,
k.

• [8] Use the DFT to describe signal_id as a sum of sinusoids. That is, for each
sinusoid, give the amplitude, frequency (in radians per sample), and phase.

5. In this problem you will use the technique described in Section 4.3 to eliminate a noise
signal from a desired signal. This signal, melody, is also contained in lab4_data.mat.
This variable contains samples of a continuous-time signal sampled at rate fs = 8192
samples/second. It contains a simple melody with one note every 1/2 second. Unfor-
tunately, this melody is corrupted by another “instrument” playing a constant note
throughout. We would like to remove this second instrument from the signal, and we
will use the DFT to do so.

Although not absolutely essential, it is a good idea to begin by listening to melody
using the soundsc command.

(a) Let’s begin by looking at just the first note (i.e the first .5 seconds or 4096
samples). This “note” consists of the sum of two notes — one is the first note
of the melody, the other is the constant note from the corrupting instrument.
Each of these notes has components forming a harmonic series. The fundamental
frequencies of these harmonic series are different, which is the key to our being
able to remove the corrupting note. Take the DFT of the first 0.5 seconds (4096
samples) of the signal.

• [3] Use stem to plot the magnitude of the DFT for the first note.
• [3] Identify the fundamental frequencies (in Hz) of the two harmonic series
present in the first 4096 samples. How many harmonics does each series
contain?
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(b) Now take the DFT of the second 0.5 seconds (samples 4097 through 8192).
• [3] Use stem to plot the magnitude of the DFT for the second 0.5 seconds.
• [2] What are the fundamental frequencies (in Hz) of the two harmonic series
in this note?

• [2] We know that the melody changes from the first note to the second, but
the corrupting instrument does not. Thus, by comparing the harmonic series
found in this and the previous part, identify which harmonic series is the
melody and which is the corrupting instrument.

(c) In order to remove the “corrupting” instrument, we simply need to zero-out
the coefficients corresponding to the harmonics of the note from the corrupting
instrument. This is done directly on the DFT coefficients of each 0.5 seconds of
the signal. Then, we resynthesize the signal from the modified DFT coefficients.
• [4] Based on this, and your results from the previous parts of this problem,
which DFT samples need to be set to zero in order to remove the corrupting
instrument from this signal?

(d) Write a for loop that removes the corrupting instrument from each note of the
signal, while leaving the melody. Have your loop execute once for each of the
twelve notes in the melody. Inside your loop, you should
i. Compute the DFT of the current note15.
ii. Zero out the appropriate DFT samples.
iii. Resynthesize the note using the inverse DFT.
iv. Concatenate the resulting resynthesis to the end of an output signal vector.
As usual, you should put this code in an M-file script so that you can run it
easily.
Make sure your resulting signal has a negligible imaginary part; then eliminate
it with the real command. You should be able to determine if you’ve done this
correctly by listening to the result with soundsc. As an additional check, the
mean-squared value of your resulting signal should be 0.5410.
• [10] Include your Matlab code in your report’s appendix.
• [6] Download melody_check.m and execute the command
>> melody_check(result);

(assuming your resulting signal is called result.) Include the resulting figure
in your report.

melody_check produces an image called a spectrogram that you can use to check
your work. Basically, the spectrogram works by taking the DFT of many short
segments of a signal and arranging them into an image. Note that the x-axis is
time and the y-axis is frequency. The color of each point on the image represents
the amount of energy (in decibels) at that time and frequency. You should be
able to see a harmonic series with fundamental frequency that changes over time.
You might want to compare this image to what melody_check returns when you
pass it the original signal, melody.

15The first time the loop executes, it should take samples 1:4096. The second time, it should take samples
4096 + (1:4096). The third time, it should take samples 8192 + (1:4096), and so on.

The University of Michigan, All rights reserved 19


