
EECS 206 February 18, 2002, Release 2.1 Laboratory #5

Laboratory # 5

Images, Compression, and
Coding

5.1 Introduction

A common application of signals and systems is in the production, manipulation, storage
and distribution of images. For example, image transmission is an important aspect of
communication (especially on the internet), and we would like to be able to distribute high
quality images quickly over low-bandwidth connections. To do so, images must be encoded
into a sequence or file of bits, which can be digitally transmitted or stored. When display
of the image is required, the sequence/file of bits must be decoded into a reproduction of
the image. A block diagram of a general data compression system, with an encoder and
decoder, is shown in Figure 5.1.

Systems or algorithms that do the encoding and decoding are called source coders, coders,
data compressors, or compressors. They are called source coders because they encode the
data from a source, e.g. a camera or scanner. They are also called data compressors,
because their encoders usually produce fewer bits than were produced by the original data
collector. For example, JPEG is a commonly used, standardized image compressor. You’ve
probably downloaded many JPEG encoded images over the internet — any image with
filename extension .jpg. FAX machines use a different image compression algorithm.

In this lab, we will experiment with some basic data compression techniques as applied
to images. Typically, there is a tradeoff between the number of bits an encoder produces
and the quality of the decoded reproduction. With more bits we can usually obtain better

Signal Decoder/
Decompressor

Encoder/
Compressor

Reconstructed
Signal

bits

Data Compression System

Figure 5.1: A block diagram of a general data compression system.

The University of Michigan, All rights reserved 1

Laboratory #5 February 18, 2002, Release 2.1 EECS 206

quality at the expense of greater storage or bandwidth requirements. When we assess how
well these techniques work, we will count the number of bits their encoders produce(fewer is
better), and as a measure of quality, and we will compute the mean-squared or RMS error
as a measure of the quality of the decoded reproduction (low error means high quality, or
equivalently, low distortion).

5.1.1 “The Question”

• How can we compress images so that they take up less storage space and/or less
bandwidth?

5.2 Background

5.2.1 Images

So far, we have dealt entirely with one-dimensional signals. That is, these signals are indexed
by only one independent variable (usually time). In this lab, we will start to consider two-
dimensional signals. An image is an example of a two-dimensional signal. In an image, we
usually index the signal based on horizontal and vertical position — two dimensions that
are needed to find the “signal value” at any given point.

In this lab, we will generally restrict our attention to gray-scale images1. We mathemat-
ically represent such an image (in continuous-space) as a signal x(t, s), where 0 ≤ t ≤ H,
0 ≤ s ≤ W . x(t, s) denotes the intensity, brightness, or value of the image at the position
with vertical coordinate t and horizontal coordinate s, and H and W are the height and
width of the image, respectively. The values of x(t, s) are generally nonnegative. Thus, a
small value of x(t, s) (close to zero) corresponds to black while larger values correspond to
progressively lighter shades of gray.

In digital image processing, the image is assumed to be sampled at regularly spaced
intervals creating a discrete-space image x[m,n]:

x[m,n] = x(mTs, nTs), (5.1)

where Ts is the sampling interval, given in units of distance. Thus, in discrete-space, an
image is simply an M ×N array or matrix of numbers x[m,n], where m and n are integers
in the range [1,M] and [1, N], respectively. Each x[m,n] is called a pixel. We adopt the
usual convention that x[1, 1] is the upper left pixel, x[1, N] is the upper right, x[M, 1] is the
lower left, and x[M,N] is the lower right.

We shall also adopt the common, but not universal, convention of digital image processing
that pixel values, often called levels, are integers ranging from 0 to 255. The reason the
pixel values are integers is that computers cannot store real-valued quantities. Instead the
raw pixel values must be quantized to values from a finite set. The usual practice is to scale
the raw image pixel values by some constant so the maximum value is close to 255 and then
to round each pixel value to the nearest integer, thereby obtaining an image whose values
are integers between 0 and 255. Why 0 to 255? There are two reasons. One is that these

1Color images are often represented as three separate signals (or channels), one each for red, green, and
blue.

2 The University of Michigan, All rights reserved

EECS 206 February 18, 2002, Release 2.1 Laboratory #5

values can be conveniently represented with one byte, i.e. 8 bits.2 Another reason is that
the effects of rounding to 256 possible levels are not ordinarily observable, whereas rounding
to a significantly smaller number, say 128, is sometimes noticeable.

5.2.2 Signal statistics for images

Two-dimensional signals in general, and images in particular, have the same sorts of statistics
that one-dimensional images have. Generalizing from the one-dimensional case is often quite
straightforward. We will also introduce two new statistics for both one- and two-dimensional
signals.

1. Average Value. The mean or average value, M , of a discrete-space image x[m,n] is

M(x) =
1

NM

M∑
m=1

N∑
n=1

x[m,n] (5.2)

2. Mean-squared value. The mean-squared value (or MSV), MS, of a discrete-space
image x[m,n] is

MS(x) =
1

NM

M∑
m=1

N∑
n=1

x2[m,n] (5.3)

3. Root mean-squared value. The root mean-squared value (or RMS value) of a
discrete-space image x[m,n] is

RMS(x) =

√√√√ 1
NM

M∑
m=1

N∑
n=1

x2[m,n] (5.4)

=
√

MS(x) (5.5)

4. Variance. The variance of a discrete-space image x[m,n] is

V ar(x) =
1

NM

M∑
m=1

N∑
n=1

(x[m,n] − M(x))2 (5.6)

= MS(x − M(x)) (5.7)
= MS(x) − (M(x))2 (5.8)

5. Standard deviation. The standard deviation of a discrete-space image x[m,n] is

Std(x) =

√√√√ 1
NM

M∑
m=1

N∑
n=1

(x[m,n] − M(x))2 (5.9)

=
√

V ar(x) (5.10)
= RMS(x − M(x)) (5.11)

=
√

MS(x) − (M(x))2 (5.12)
2To store an integer in a computer, it must be represented with a binary sequence. If binary sequences

of length b are used, then 2b levels can be represented, because there are 2b distinct binary sequences of
length b. Thus, it takes 8 bits to store the 256 levels from 0 to 255.

The University of Michigan, All rights reserved 3

Laboratory #5 February 18, 2002, Release 2.1 EECS 206

x[m,n]

Image Encoder

Transform Quantizer Binary
Encoder

bits

Figure 5.2: A block diagram of a general image encoder/compressor.

Notice the relationship between the variance and standard deviation, equation (5.10),
and the relationship between these statistics and the MS and RMS values3, equations (5.8)
and (5.12). The variance and standard deviation measure how widely varying are the values
of a signal. If they are small, it means that the signal values (and thus the signal value
distribution) is tightly clustered around the mean value, while if they are large, the signal
values range widely.

Recall from Laboratory #1 that we often use the MS and RMS values to measure
distortion of a signal. We will be doing this for images in this laboratory. If y[m,n] is a
distorted version of x[m,n], then we can measure the mean-squared error (MSE) and root
mean-squared error (RMSE), using

MSE =
1

NM

N∑
n=1

M∑
m=1

(x[m,n] − y[m,n])2 (5.13)

RMSE =
√

MSE. (5.14)

5.2.3 Data compression

There are two primary types of data compressors: lossless and lossy. A lossless compressor
will encode and decode in such a way that the decoded reproduction is exactly the same
as the original (8 bits per pixel) image. A lossy compressor will encode and decode in such
a way that the decoder produces only an approximation to the original image. On the
one hand, lossless is better because it is, well, lossless. This is essential when compressing
computer files. UNIX compress, gzip, and the PKZip compression formats are all lossless.

On the other hand, if a small amount of distortion is permitted, lossy compressors can
attain much larger amounts of compression, i.e. their encoders can produce many fewer
bits. For multimedia, lossy compression is often acceptable. Examples of lossy compression
schemes that you may have used include MP3 (for audio), JPEG (for photos), and MPEG
(for movies). These three schemes are all examples of transform coding methods; we will
examine a simple transform coding scheme in this laboratory. MP3 encoding is also an ex-
ample of so-called perceptual coding. Perceptual coding methods often introduce significant
amounts of distortion, but do so in a way that is nearly imperceptible.

Consider the generalized image encoder/compressor shown in Figure 5.2. It consists of
three main components: the transform, the quantizer and the binary encoder. These are
described briefly now, and in more detail in the next three subsections. The input to the
encoder is a sampled image, x[m,n]. We generally consider that the pixels of x[m,n] take
on a continuum of real values.

3Equation (5.8) is not something that is immediately obvious, but it is something that can be straight-
forwardly derived. (Doing so is an interesting exercise.)

4 The University of Michigan, All rights reserved

EECS 206 February 18, 2002, Release 2.1 Laboratory #5

x[m,n]

Image Decoder

Inverse
Transform

Binary
Encoder

bits ^

Figure 5.3: A block diagram of a general image decoder/decompressor.

The first component, the transform, is optional. When it is included, it is usually
a spatial-domain to frequency-domain transformation like the Discrete Fourier Transform
(DFT). Applying the transform to short segments or blocks of the signal tends to concentrate
the energy of the signal into just a few coefficients, which permits the quantizer and binary
encoder to be more effective.

The next component is quantization. Quantization takes the input sample/pixel and
“rounds” it to one of a finite set of levels. It is a lossy or noninvertible operation in the
sense that one cannot recover the original sample/pixel from the quantized sample/pixel.
As an example, we noted previously that digital images often have pixel values ranging from
0 to 255. This is because each raw pixel value, as produced by some camera, has already
been rounded to the nearest of a set of 256 quantization levels. Lossless image compression
schemes work by operating on image that are already quantized; additional quantization is
not permitted. However, in lossy compression schemes, additional quantization is performed,
in order to obtain greater compression. For example, each image pixel may be quantized to
the nearest of a set of only 64 levels.

The final component is binary coding, which assigns a sequence of bits called a codeword,
to each level produced by the quantizer. In some systems, called fixed-length coders, the
number of bits used to represent each pixel is known in advance (e.g. 2 bits per pixel).
This is the simplest type of coder. Other systems, called variable-length coders, assign
binary codewords of different lengths to each pixel value, usually based on the frequency
of occurrence. More frequently occuring levels are assigned shorter codewords. This allows
the compression system to achieve additional compression. Many advanced compression
systems, including JPEG, use variable length coders. MP3 coding has provisions for both
fixed-length and variable-length coding.

As illustrated in Figure 5.3, the decoder/decompressor corresponding to the encoder/com-
pressor just described has two components. The input to the decoder is the bits produced
by the encoder. The first component, the binary decoder, inverts the operation of the binary
encoder, and produces the levels originally produced by the quantizer. The quantization
operation produced by the encoder is not invertible, so there is not corresponding decoding
step. Instead the last step is the inverse transform, which as the name suggests performs the
inverse of the encoding transform. The output of the decoder, called an encoded or decoded
image or reproduction can be displayed on a monitor or printed on paper, as desired.

5.2.4 Transformation

Efficient lossy data compressors typically perform some sort of preprocessing on the data to
be compressed. One very common preprocessing step is a transform, and such compressors
are called transform coders. For example, JPEG is a transform coder based on the dis-

The University of Michigan, All rights reserved 5

Laboratory #5 February 18, 2002, Release 2.1 EECS 206

crete cosine transform (DCT), which is a spectral transformation similar to the DFT. The
transform is typically applied to small groups of pixels called blocks. In this lab, we will ex-
periment with a simple DFT-based transform coder that uses short 1×8 pixel blocks. That
is, we use an N -point DFT with N = 8. Recall that the synthesis and analysis formulas for
an 8-point DFT are give by

x[n] =
7∑

k=0

X[k]ej 2πk
8 n (5.15)

X[k] =
1
8

7∑
n=0

x[n]e−j 2πk
8 n (5.16)

Here, X[k]ej 2πk
8 n is the “spatial” frequency component at frequency ω̂ = 2πk

8 . The DFT syn-
thesis formula shows that an image block x[n] can be viewed as the sum of such components.
More specifically,

(x[0], x[1], x[2], . . . , x[7]) = X[0] (1, 1, 1, . . . , 1)

+ X[1] (ej 2π
N 0, ej 2π

N 1, ej 2π
N 2, . . . , ej 2π

N 7)

+ X[2] (ej 2π2
N 0, ej 2π2

N 1, ej 2π2
N 2, . . . , ej 2π2

N 7)
+ . . .

+ X[7] (ej 2π2
N 0, ej 2π2

N 1, ej 2π2
N 2, . . . , ej 2π2

N 7) (5.17)

Note that we are NOT presuming that these blocks are in any way periodic.
Why do we perform a spectral transformation before compressing a signal? As suggested

in Section 5.2.3, the transformation serves to shift around the energy in a given block so
that it is easier to compress. Consider, for instance, a single block of an image given by

x[n] = (165, 168, 167, 166, 167, 165, 168, 166)

This block is roughly constant, so we expect its 8-point DFT to have a large X[0] (i.e., DC)
component. Since there is little other variation, though, the rest of the DFT coefficients
will be relatively small. By only storing the X[0] coefficient, for instance, and throwing
away the rest, we only need 1/8th as much storage as if we had stored all of the coefficients
for this block; further, we have introduced only a small amount of distortion (as measured
by the mean-squared error). While we won’t go so far as to throw away the rest, this
example suggests the basic idea for how to use the transform to compress a signal. If some
transformed coefficients tend to be smaller than others, we can store them more efficiently.

An 8-point DFT produces 8 complex numbers, X[0],X[1], . . . ,X[7]. This actually trans-
lates into 16 real numbers (the 8 real and 8 imaginary parts) that we need to consider
storing. Thus taking the transfrom would at first seem to be a bad idea, because we now
need twice as much storage to represent a block! However, there are symmetry properties
that we can exploit so that we only need to store 8 of these numbers. Since the input signal
is real, recall that the 8-point DFT, X[k] has the conjugate symmetry property:

X[8 − k] = X∗[k] (5.18)

This means that knowing the real and imaginary parts of X[1], for instance, completely
determines the real and imaginary parts of X[N−1]. Thus, though we need to store the real

6 The University of Michigan, All rights reserved

EECS 206 February 18, 2002, Release 2.1 Laboratory #5

and imaginary parts of X[0],X[1],X[2],X[3],X[4], we do not need to store X[5],X[6],X[7],
because these values can be recovered from the previous four. Further, the coefficients X[0]
and X[4] are purely real (that is, X[0] = X∗[0] and X[4] = X[8 − 4] = X∗[4]). Thus, X[0]
and X[4] each require the storage of a single real number. From this argument, we can see
that the 8-point DFT produces a total of only eight real numbers that must be stored.

In our implementation of the transform encoder, the eight numbers c[0], . . . , c[7] that we
chose to represent the 8-point DFT X[0], . . . , X[7], of an image block are

c[0] = X[0]

c[1] =
√

2 Re {X[1]}
c[2] =

√
2 Re {X[2]}

c[3] =
√

2 Re {X[3]}
c[4] = X[4]

c[5] =
√

2 Im {X[1]}
c[6] =

√
2 Im {X[2]}

c[7] =
√

2 Im {X[3]}

The
√

2 factors have been included where one coefficient is, in effect, standing in for two. It
can be shown that with these factors

7∑
n=0

x2[1, n] = 8
7∑

k=0

c2[k], (5.19)

which is an often useful fact. This is derived using Parseval’s relation, as given in Lab #4.

5.2.5 Quantization

Quantization is the most elementary form of lossy data compression, while also forming a
fundamental part of more advanced lossy compression schemes such as transform coding.
We may quantize an image directly, or we may quantize the results of a transformation as
described in Section 5.2.4. When a number x is quantized to L levels, we mean that its value
is replaced by (or quantized to) the nearest member of a set of L quantization levels. Here,
we consider uniform quantization4. For the uniform quantization used here:

• We define a quantizer range defined by values xmin and xmax

• We divide this range into L equally sized segments, each with size ∆ = xmax−xmin

L .

• We place the quantization level for a given segment in the middle of that segment.

The quantizer is illustrated with the figure shown below, which shows L = 8 segments of
width ∆ = (xmax −xmin)/8 as thick lines and the corresponding levels within each segment
as circles.

4There are sometimes advantages to using quantizers with unequal level spacings, but we will not deal
with such quantizers in this lab. Uniform quantizers are sometimes called uniform scalar quantizers to
distinguish them from more sophisticated quantizers that do not operate independently on successive data
samples.

The University of Michigan, All rights reserved 7

Laboratory #5 February 18, 2002, Release 2.1 EECS 206

∆

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8

xmin xmax

Given a pixel x[m,n], the quantizer operates by outputing the nearest level. Equivalently,
if x[m,n] lies in the ith segment, then quantizer outputs the ith level. If x is larger than
xmax, then x is quantized to the largest level, namely, xmax −∆/2. Similarly, if x is smaller
than xmin, then x is quantized to the smallest level, namely, xmin + ∆/2.

One can see that if x is within the quantizer range, then its quantized value will differ
from x by at most ∆/2, so that the quantizer introduces only a small error. On the other
hand, when x is outside the range, the quantizer can introduce a large error. Thus, when
designing a quantizer it is important to choose the quantizer range so that it includes most
values of x. Making the range large will do this. However, we don’t want to make the range
too large. Larger ranges mean that ∆ = (xmax − xmin)/L is larger, which in turn increases
the maximum possible error introduced when x lies within the range of the quantizer.

5.2.6 Binary coding

The output of a data compression encoder must always be bits, not quantized samples or
pixels. Thus, the quantizer is always followed by a binary encoder, as illustrated in Figure
5.4. A compressor that consists simply of a quantizer followed by a binary encoder will be
called a direct quantizer, in contrast to a transform coder or some other coder that involves
a preprocessing step.

A binary encoder operates by assigning a distinct sequence of bits, called a codeword
to each level of the quantizer. For example, an assignment of codewords to levels is shown
below

∆

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8

xmin xmax

000 001 010 011 100 101 110 111

Such binary codewords are the output of the encoder when quantizing the data. The
decoder will, eventually, receive a binary codeword and output the corresponding quanti-
zation level as the reproduction of the original piece of data. For instance, if the image
pixel x[m,n] lies in the third segment of the quantizer, the binary encoder will produce 010,
which when received, the decoder will produce level 3 as the reproduction of x[m,n].

bits
x[m,n]

Encoder

Binary
EncoderQuantizer

Binary
Decoder

Decoder

x[m,n]^
x[m,n]^

Figure 5.4: Block diagram of a direct quantizer

8 The University of Michigan, All rights reserved

EECS 206 February 18, 2002, Release 2.1 Laboratory #5

Coding Rate (bits/pixel)

R
M

S
E

rr
or

Figure 5.5: There is an inherent tradeoff between coding rate and distortion.

If, as often happens, the number of levels is a power of two, i.e. M = 2b where b is an
integer, then the simplest approach is to make each codeword have b bits. It does not matter
which b-bit sequence is assigned to which level, but the usual scheme, as illustrated above,
is to assign the binary sequence representing 0 to the smallest level, the binary sequence
representing 1 to the next largest level, and so on. With this type of binary coding, the
encoder is fixed-length (or fixed-rate) in the sense described earlier. Often, a better scheme
is to use shorter codewords for the quantization levels that occur more frequently, and longer
ones for those that are used less frequently. Such variable-length codes are used in JPEG
and other high efficiency schemes.

5.2.7 Performance

There are two ways that we measure the performance of a compression system. First, we
want to know how many bits are required to store an image. The total number of bits
produced by the encoder is equal to the number of blocks multiplied by the number of bits
required to encode one block. More commonly, we report the number of bits required to
store a single pixel. This is called the coding rate, R. The coding rate is equal to the number
of bits required to code a single block divided by the number of pixels in a block. Naturally,
we prefer a lower coding rate.

The second performance measure is the amount of distortion introduced by the coder.
Generally, we measure this distortion by computing the mean-squared (MSE) or RMS error
(RMSE). We also prefer to have low distortion, and equivalently low error.

Unfortunately, we generally have to trade off between these two performance measures.
That is, we can produce a highly compressed (with a low coding rate) image, but this
generally introduces a large RMS error. Alternatively, we can have a very high-quality
representation of an image (with low distortion), but such a representation requires many
bits to encode. Figure 5.5 shows an illustration of the tradeoff between the two perfor-
mance measures. In the laboratory assignment, you will produce a plot similar to this for
compression using uniform quantization.

Performance of direct quantizers

Let us now analyze the performance of a direct quantizer, where the quantizer is uniform
with L = 2b levels and range [xmin, xmax].

The University of Michigan, All rights reserved 9

Laboratory #5 February 18, 2002, Release 2.1 EECS 206

Since the binary encoder for such a system assigns b bits to each level, the coding rate is

R = b bits/pixel (bpp) (5.20)

Elementary theory predicts that when the quantizer range includes most values of the
image x[m,n] and when ∆ is much smaller than the standard deviation of the image, then
the MSE induced by quantizing with level spacing ∆ can be approximated as follows.

MSE ≈ 1
12

∆2 (5.21)

=
1
12

(
xmax − xmin

L

)2

(5.22)

=
1
12

(xmax − xmin)22−2R , (5.23)

This shows that if we were to shrink ∆ by a factor of 2, as would happen if L were doubled
and the range were held constant, then the MSE would decrease by a factor of four. Equiv-
alently, the last equation shows that this factor of four reduction comes by increasing the
coding rate by one bit per pixel.

When a quantizer is applied to data whose signal value distribution is fairly constant over
a given range, then it is usually good practice to choose the quantizer range to match the
data range. This is generally the case when directly quantizing images, so we will generally
choose xmin = 0 and xmax = 255.

On the other hand, when quantizing data whose signal value distribution is quite uneven,
then it may be best to choose the quantizer range to be a subset of the data range. For
example, in transform coding, it often happens most of the data to be quantized is near
zero but there are a few very, very large values. In such cases, experience has shown that to
design a quantizer with small MSE, one should normally choose the width of the range to
be proportional to the standard deviation of the data being quantized, i.e. (xmax −xmin) =
c × Std(x) = c

√
V ar(x). The constant of proportionality c is usually between 2 and 6.

Smaller values of c work well for smaller values of L, and larger values of c work well for
large values of L. Using this relation in (5.21), we find

MSE ≈ 1
12

∆2 =
1
12

(
xmax − xmin

L

)2

(5.24)

≈ c2

12
V ar(x)

L2
. (5.25)

≈ c2

12
V ar(x)2−2R. (5.26)

This shows that quantizer MSE is proportional to the variance of the data and inversely
proportional to L2.

5.2.8 Designing a transform coder

In the previous sections, we have described the three main components of transform type
data compression system. In particular, in Section 5.2.4, we described a transform that uses
an 8-point DFT of 1 × 8 blocks of image pixels. A block diagram of the system based on
this transform can be found in Figure 5.6.

10 The University of Michigan, All rights reserved

EECS 206 February 18, 2002, Release 2.1 Laboratory #5

x[m,n]
DFT
Block

Quantizer 1

Quantizer 2

Quantizer 8

IDFT
Block x[m,n]

Encoder Decoder
..

.

..
.

c[0]

c[1]

c[7] c[7]

c[0]

c[1]

^

^

^

^

bits
Binary Encoder

Binary Encoder

Binary Encoder

Binary Decoder

Binary Decoder

Binary Decoder
c[7]

c[0]

c[1]

^

^

^

Figure 5.6: A block diagram of a transform code. The encoder divides the incoming im-
age, x[m,n] into 1 × 8 blocks and transforms each block into a sequence of 8 coefficients
c[0], . . . , c[7]. These coefficients are then quantized to yield ĉ[0], . . . , ĉ[7], and encoded into
a binary representation. The decoder creates a reconstruction of the image, x̂[m,n] by
decoding the binary codewords and inverting the transformation.

To make this transform coder work well, though, the quantizers must be individually
designed for each of the eight types of (independent) coefficients. Indeed, if we quantize all
eight types of coefficients with the same number of levels, then the transform coder will not
work substantially better than direct quantization (quantization without preprocessing).
Thus, for each of the eight types of coefficients, we must carefully choose the number of
quantization levels, L, and the quantizer range limits, xmin and xmax.

Let Lk be the number of levels for each coefficient c[k]. Further, let each Lk be a power
of two such that Lk = 2bk , where bk is the number of bits that we allocate to the transformed
coefficient c[k].

It should be clear that choosing large Lk’s will permit the transform coder to encode
with less distortion. However, the total number of bits produced by the encoder is the
number of blocks, N2

8 , times the number of bits to encode one block,
∑7

k=0 bk. Thus, higher
Lk’s require more bits to store the signal, and thus a higher coding rate. For this transform
coder, we can calculate the coding rate, R, as

R =
1
8

7∑
k=0

bk bpp . (5.27)

In many situations, we are given a desired coding rate R, e.g. R = 2 bpp. In this case, the
question becomes how we should divide these bits among the eight types of coefficients, i.e.
how to choose the bk’s, so they average to the desired coding rate R, yet cause the distortion
in the reproduction produced by the transform code to be as small as possible.

Using (5.19), it can be shown that.

MSE =
7∑

k=0

MSE[k] , (5.28)

where MSE[k] is the MSE of the quantizer for c[k]. In other words, the MSE of the transform
coder is approximately the sum of the MSE’s of the quantizers for the different coefficients.

Let us first consider a transform coder where each type of coefficient is quantized with
the same number of bits/pixel, i.e. b0 = b1 = . . . = b7. We assert without proof that such

The University of Michigan, All rights reserved 11

Laboratory #5 February 18, 2002, Release 2.1 EECS 206

a transform coder has roughly the same MSE as that of direct quantization with the same
number of bits/pixel. Now, we will now argue that changing the b[k]’s so that some are
larger than others will make the transform coder work better than direct quantization.

From (5.26) we have that

MSE[k] ≈ 1
12

c2 V ar(c[k])2−2bk , (5.29)

where V ar(c[k]) denotes the variance of the c[k] values. One can see from the above that
the coefficients with larger variance will be quantized with larger mean-squared error. In
particular the DC coefficients C[0] usually have the largest variance; so they will have the
largest MSE. On the other hand, the c[3]’s and c[7]’s usually have the smallest variance and
distortion.

Now suppose we increase b0 by one and decrease b7 by one. From (5.27) we see that this
will have no net effect on the number of bits produced by the coder. However, from (5.29)
we see that this decreases the (large) MSE of the DC coefficients c[0] by a factor of 4, and
increases the (small) MSE of the c[7] coefficients by a factor of 4. Is it beneficial to decrease
one MSE by 4, when another one increases by 4? We can see from (5.28) that indeed it is
beneficial. Decreasing a larger MSE by the factor 4 decreases the average in (5.28) more
than increasing a small MSE by the factor of 4 increases the average.5 Thus, what we want
to do is shift bits towards the coefficients with larger variances. This will make MSE smaller
than if all coefficients were quantized with the same number of bits and, therefore, smaller
than the distortion of direct quantization.

More generally, in a well designed transform code, all of the MSE[k]’s will be approxi-
mately the same. If they were quite different, we could move a bit from a coefficient with
small MSE to one with large MSE and achieve a net decrease in overall MSE. In this light,
we can see that the role of the transform is to make the variances of the coefficients as
different as possible. Some should be large, and others should be small.

5.3 Some Matlab commands for this lab

• Making a matrix into a vector. Especially when working with images, it is often
useful to be able to convert a matrix into a vector containing the same elements. In
Matlab, we can do this for a matrix x in the following manner:

>> y = x(:);

After this operation, y contains a “vectorized” version of x. Specifically, if x is an
M × N matrix, y is a vector whose first M elements are the first column of x, whose
second M elements are the second column of x, and so on. This is especially useful
for calculating many of the signal statistics presented in this laboratory.

• Calculating signal statistics on images. To compute these statistics on images,
we first need “vectorize” the image.

1. Average value, M(x):

>> M = mean(x(:))

5For example, 24 + 4 is larger than 24/4 + 4× 4.

12 The University of Michigan, All rights reserved

EECS 206 February 18, 2002, Release 2.1 Laboratory #5

2. Mean-squared value, MS(x):

>> MS = mean(x(:).^2)

3. Root-mean squared value, RMS(x):

>> RMS = sqrt(mean(x(:).^2))

4. Variance, V ar(x).

>> variance = var(x(:));

5. Standard deviation, Std(x).

>> std_dev = std(x(:));

6. Signal value distribution. To compute a histogram with 256 bins centered at
integers from 0 to 255, use the command

>> hist(x(:),0:255);

• Loading images. Images are generally stored in some sort of standard file format,
like TIFF or JPEG. To load such an image file into Matlab, we use the command
imread. Unfortunately, imread generally returns images as arrays of integers. This
is unfortunate because Matlab puts some heavy restrictions on the use of integers.
In particular, to prevent integer overflow you cannot perform arithmetic on integers.
Thus, we need to convert our loaded images into double precision arrays using the
command double. To load and convert an image in the file my_img.tif, for instance,
use the command

>> x = double(imread('my_img.tif'));

Note that the imread command will load many standard image file formats, including
JPEG, PNG, BMP, TIFF, PCX, and a host of others.

• Displaying images. To display an image in Matlab, there are actually a number
of commands that must be used simultaneously. To display the image itself, we use
imagesc command. To tell Matlab to display the image as a gray-scale image, we
use command colormap(gray). To set the axes so that the aspect ratio is correct,
use the command axis image. Finally, to add a “color bar” that relates image values
to colors, use the colorbar command. Every image that you produce for this course
must have a color bar; you will lose points for every image you display without a color
bar. To do all of these things at once to display an image x, use the following code:

>> imagesc(your_img); colormap(gray); axis image; colorbar

You will be using this sequence of commands often, so you might wish to write a short
function that executes all of these commands simultaneously.

• Quantizing an image: The function quantize_fcn.m, which we provide to you for
this lab, implements a uniform quantizer for images and transform coefficients. It
takes a signal, the desired number of quantization levels (L), and the two numbers
that define the quantization range, xmin and xmax. For instance, to quantize an image,
img, to 64 levels, use the command

The University of Michigan, All rights reserved 13

Laboratory #5 February 18, 2002, Release 2.1 EECS 206

>> [q_img, delta] = quantize_fcn(img,64,0,255);

q_img contains the quantized image, while delta contains the ∆ value used for quan-
tization. Here, note that xmin = 0 and xmax = 255. This separately quantizes each
pixel of img to one of 64 levels, in accordance with the procedure described in the
background section.

• Using the DFT Coder: The DFT-based transform coder that we have described in
this laboratory is provided as three separate functions.

– dft_block.m breaks the image into 1 × 8 blocks and computes the DFT of each
block. If the image is N ×N , this function produces a series of eight band images.
For k = 1, . . . , 8, the kth band image contains the c[k − 1] coefficients for each
block. For example, the k = 1 band image, contains the c[0], or DC, coefficients
from each block. Each band image has size M × N/8.
The eight band images are returned as a three-dimensional array. To produce
the band images for an image, img and then access the third band image, for
instance, we would use the commands

>> A = dft_block(img);
>> A(:,:,3);

Note that except for the first one, each band image contains both positive and
negative values. However, we can still display them using imagesc.

– inverse_dft_block.m reconstructs the image from the matrix of band images
returned by dft_block.m.

– dft_coder.m puts both of these blocks together by calling dft_block, quantizing
the coefficient matrix, and reconstructing the image with inverse_dft_block.
dft_coder takes several input parameters, all of which are optional except the
first one. The first parameter is the image to encode. The second is a vector of
bit allocations, bk. For instance, if we call dft_coder like this

>> coded = dft_coder(img,[8 6 6 6 6 4 4 4]);

we quantize our c[0] (DC) coefficients using 8 bits, the next four (real) coefficients
with 6 bits each, and the last three (imaginary) coefficients using 4 bits each6.
Note that the number of bits required to encode a single pixel is equal to the
average value of all of the bk’s. Thus, the example above uses 5.5 bits per pixel.
When run, dft_coder returns the decoded image and also displays a table of
useful statistics corresponding to each coefficient c[k]. To see this table, make
sure that you put a semicolon at the end of your call to dft_coder.

5.4 Demonstrations in the Lab Section

1. Images are signals too.

6Though more advanced coders may allow the allocation of fractions of bits, for this coder you must
allocate a whole number of bits to each coefficient. You can, however, assign no bits to a coefficient. In this
case, that coefficient is simply set to a constant value.

14 The University of Michigan, All rights reserved

EECS 206 February 18, 2002, Release 2.1 Laboratory #5

2. Signal compression

3. The “Almost JPEG” DFT Coder

4. Designing the coder

5.5 Laboratory assignment

1. In this problem, you’ll familiarize yourself with the image capabilities of Matlab
along with one particular image, the “cameraman.”

(a) Load the image “cameraman.tif”. (If your computer does not have the Image
Processing Toolbox, you’ll need to download the file from the web page).

• [3] Display the image and include the resulting figure in your report.
• [1] Calculate the size of the image (the number of rows and columns) and

the total number of pixels in the image.
• [2] Find the minimum and maximum pixel values, xmin and xmax in the

image.

(b) Estimate the signal value distribution of this image by generating a histogram
with 256 bins centered at integers from 0 to 255.

• [3] Include the resulting plot in your report.
• [2] From this histogram, what signal values occur the most often in this

image?
• [2] In words, describe which part(s) of the image corresponds to these signal

values.

(c) It is useful to be able to think of images in terms of the signal values that make
them up. Download the M-file display_square.m, which will help this process.
Use this function to display the pixel values in several rectangular segments of
the “cameraman” image. Find, approximately, the smallest rectangle of pixels
that includes the black tip of the camera lens.

• [3] Include in your report a plot from display_square.m showing the pixel
values of the rectangle you found.

• [2] From this display, what are the row and column indices of this rectangle?
• [2] From this display, what are minimum and maximum values within this

rectangle?

(d) We know that this image takes on only integer values over a finite range, but
there are still a few different ways we can represent the image. In the original
file, for instance, each pixel is represented using 8 bits. In Matlab, though, we
convert the image into 64-bit double precision values.

• [1] How many bits are required to describe the entire image at 8 bits per
pixel?

• [1] How many bits are required to describe the entire image at 64 bits per
pixel?

• [1] How many possible pixel values can a 64-bit number represent?

The University of Michigan, All rights reserved 15

Laboratory #5 February 18, 2002, Release 2.1 EECS 206

2. In this problem, we will experiment with direct quantization as an image compression
mechanism. Download the function quantize_fcn.m.

(a) Quantize the “camerman” image using 64 levels, 16 levels, and 4 levels.

• [4] Display and include in your report the three resulting quantized images
along with the original using subplot. Again, make sure that you indicate
which image is which.

• [2] Describe the effects of the quantization in these plots.

(b) Use Matlab to make a plot of the function being implemented by quantize_fcn.m.
For example, for the 64 level quantizer, run quantize_fcn(x,64,0,255) for x
ranging from 0 to 255, and plot the resulting values versus x.

• [2] Plot the quantization function for the 16 level quantizer.
• [2] Also, plot the histogram of image quantized with 16 levels, using 256 bins

centered at integers from 0 and 255.

(c) For the 4, 16, and 64 level quantizers,

• [2] How many bits are needed to represent each of these quantized images?
• [2] How many bits are needed to represent each pixel in one of these images?

(d) Find the “error image” corresponding to each of these quantized images.

• [4] Using subplot, display and include in your report the three error images
in the same plot.

• [2] Can you see aspects of the original images in these plots?
• [3] Calculate the RMS error for each quantization of the image.

(e) Now, we want to compare the actual RMS error for “cameraman” versus the
predicted RMS error (based on the derivation in section 5.2.5) for quantizers
with 2, 4, 8, 16, 32, 64, and 128 levels.

• [4] Calculate the actual RMS error for each of these quantizers.
• [4] Calculate the predicted RMS errors for these quantizers.
• [4] Plot both the actual and predicted RMS error values versus the required

number of bits per pixel.
• [2] For what number of bits per pixel is this prediction most accurate?

3. In this problem, you will experiment with the DFT-based transform coder that is
described in the background section.

(a) Download the M-file dft_block.m. Use it to generate the matrix of band images
for the “cameraman” image.

• [4] Use subplot to simultaneously display all eight band images. Use axis square
rather than axis image when you display these band images.

• [2] Discuss the appearances of the various band images. For example, can
you see any features of the original cameraman image in any or all of them?

(b) Download the M-file inverse_dft_block.m. Use this function to reconstruct the
original image from the set of band images produced by dft_block.

16 The University of Michigan, All rights reserved

EECS 206 February 18, 2002, Release 2.1 Laboratory #5

• [2] Compute the RMS error between the original and the transformed/inverse
transformed image. (It should be negligibly small.)

(c) Download the M-file dft_coder.m. Our goal in using dft_coder is to find ap-
propriate parameters for the eight quantizers when compressing the “camerman”
image. Through intelligent design, we hope to achieve lower RMS error than with
direct quantization of the image using the same number of bits. We do this by
allocating bits to each of our eight quantizers independently.

i. Find a 4 bits per pixel design with as small an RMS error as you can. You
should be able to get an RMS error less than 4. (Hint: As a general rule of
thumb from Section 5.2.8, bigger coefficients should get more bits.)
• [4] What bit allocation did you use, and what was the resulting RMS

error?
• [3] Display the reconstructed image and the error image on the same

figure using subplot.
• [2] Compare your RMS error to the RMS error of 4 bits per pixel uniform

quantization that you performed in problem 2e.
• [1] Compare the qualitative appearance of the reconstruction produced

by the transform coder to that produced by the direct quantizer.
ii. Find a 3 bits per pixel design with as small an RMS error as you can. You

should be able to get an RMS error less than 6.4.
• [4] What bit allocation did you use, and what was the resulting RMS

error?
• [3] Display the reconstructed image and the error image on the same

figure using subplot.
• [2] Compare your RMS error to the RMS error of the 3 bits per pixel

uniform quantization that you performed in problem 2e.
• [1] Compare the qualitative appearance of the reconstruction produced

by the transform coder to that produced by the direct quantizer. (Note:
You have not yet displayed the 3 bpp image, so you will need to generate
it for comparison.)

iii. Find a 2 bits per pixel design with as small an RMS error as you can. You
should be able to get an RMS error less than 10.8.
• [4] What bit allocation did you use, and what was the resulting RMS

error?
• [3] Display the reconstructed image and the error image on the same

figure using subplot.
• [2] Compare your RMS error to the RMS error of a 2 bits per pixel

uniform quantization that you performed in problem 2e.
• [1] Compare the qualitative appearance of the reconstruction produced

by the transform coder to that produced by the direct quantizer.
iv. Given your experimentation with this transform coder,

• [2] Comment on the relative performances of direct quantization and
transform coding as the number of bits/pixel changes.

4. On the front page of your report, please provide an estimate of the average amount of
time spent outside of lab by each member of the group.

The University of Michigan, All rights reserved 17

Laboratory #5 February 18, 2002, Release 2.1 EECS 206

Postscript: JPEG Compression

In this lab, we’ve presented a transform coder here which uses some of the same basic ideas
as JPEG compression. However, JPEG achieves much higher compression rates that what
we have seen, and with much less distortion. How is this achieved? There are several
modifications used in JPEG coding.

1. JPEG uses a two-dimensional transform. This allows much greater compaction of the
data into a few transform coefficients.

2. JPEG uses a transform called the discrete cosine transform, which purely real, rather
than the DFT. This removes some of the redundancies in our coding method.

3. JPEG uses a technique called run-length encoding. This allows a coder to store a
“run” of similar values by indicating the value and the number of repetitions.

4. JPEG uses a variable-length coding scheme (often Huffman coding, which you may
study in an intermediate programming course on data structures and algorithms) to
produce a bit stream for the final coded representation.

All of these improvements allow images to be significantly compressed with relatively small
distortion. For more information about JPEG coding, you might wish to look at the JPEG
Tutorial:

http://www.ece.purdue.edu/~ace/jpeg-tut/jpegtut1.html

18 The University of Michigan, All rights reserved

