
EECS 206 March 25, 2002, Release 2.0 Laboratory #8

Laboratory # 8

Classification and Vowel
Recognition

8.1 Introduction

The ability to recognize and categorize things is fundamental to human cognition; a large
part of our ability to understand and deal with the world around us is a result of our ability
to classify things. This task, which is generally known as classification, is important enough
that we often want to design systems that are capable of recognition and categorization.
We want vending machines to be able to recognize the bills inserted into the bill changer.
We want internet search engines to classify web pages based on their relevance to our query.
We want computers that can recognize and classify speech properly so that we can interact
with them naturally. We want medical systems that can classify unusual regions of an x-
ray as cancerous or benign. We want high speed digital communication modems that can
determine the sequence of, say, 64-ary signals that were transmitted.

There is a vast array of applications for classification. In this lab, we consider a popular
application of classification: speech recognition. In particular, we will focus on a simplified
version of speech recognition, namely, vowel classification. That is, we will experiment with
systems that classify a short signal segment, corresponding to a spoken vowel, as either an
“ah”, or an “ee”, or an “oh”, etc.. (We won’t deal with how one determines that a given
segment corresponds to a vowel.) In the process, we will develop some of the basic ideas
behind automatic classification.

One of these basic ideas is that an item to be classified is called an instance. For example,
if each of 50 short segments of speech must be individually classified, then each segment is
considered to be one instance. A second basic idea is that there is a finite set of prespecified
classes to which instances may belong. The goal of a classifier system (or simply a classifier)
is to determine the class to which a presented instance belongs. A third basic idea is that to
simplify the process, the classification of a given instance is based on a set of feature values.
This set is a relatively small list of numbers that, to an appropriate degree, describe the given
instance. For example, the short segment of speech might contain 1000 samples, but we will
see that vowel classification can be based on feature set with as few as two components. A
fourth basic idea is that classification is often performed by comparing the feature values for
an instance to be classified with sets of feature values that are representative of each class.

The University of Michigan, All rights reserved 1

Laboratory #8 March 25, 2002, Release 2.0 EECS 206

The output of the classifier will be the class whose representative feature values are most
similar, in some appropriate sense, to the feature values of the instance to be classified.

8.1.1 “The Question”

• What is the general framework for performing automatic classification?

• How can we recognize and classify vowels in a speech recognition system?

8.2 Background

8.2.1 An Introduction to Classification

You may recall Lab 7, in which we developed a system for decoding DTMF signals into the
sequence of key-presses that produced the original signal. Our DTMF decoder was actually
performing classification on each segment of the DTMF signal. Classification is a process
in which we examine instances of some thing (like an object, a number, or a signal) and
try to determine which of a number of groups, or classes, that instance belongs to. We can
think of this as a labeling process. In our DTMF decoder, for example, we looked at a given
segment of the signal and labeled it with a number corresponding to an appropriate key
press.

Generally, classification is a two-stage process. Figure 8.1 shows a block diagram of a
classifier system. First, we need some information about the instance that we are consider-
ing. This information is traditionally referred to as a set of features. If we are classifying
people, for instance, we might use height, weight, or hair color as features. If we are clas-
sifying signals, we might use power, the output of some filter, or the energy in a certain
spectral band as features. So that we can deal with our features easily, we generally like to
have a set of measurable features to which we can assign numerical feature values. When we
are using more than one feature to describe an instance, we typically place all of the feature
values into a feature vector, f = (f1, f2, . . . , fN). N is the number of elements in the feature
vector and is called the dimension of the feature vector. A feature vector is calculated for
each instance we wish to classify by measuring the appropriate aspects of that instance. As
shown in Figure 8.1, the first block is the “feature calculator,” which takes an instance (of
a signal, for instance) and produces the set of numerical feature values. For our DTMF
decoder, our features were the spectral strength of a given segment of the signal at each
DTMF frequency. That is, the feature calculator produced a seven-element feature vector,
one for each DTMF frequency.

The second stage of classification, the “feature classifier,” uses the feature vectors to
decide which class a feature vector belongs to. Generally, we make this decision by comparing
the feature vector for an instance to each member of a set of representative feature vectors,
one for each class under consideration. The idea is that the decision-maker labels the
instance as the class that has the most similar representative feature vector. We will discuss
the specifics of the feature classifier after we have presented a classification example.1

Before we continue, we should note the relationship between what we previously called
“detection” and what we now call “classification”. Detection generally refers to binary
“signal present” or “signal not present” decisions. For instance in Lab 1, we used to energy

1The classifier for the DTMF decoder can be viewed as implicitly operating in this fashion. It is an
interesting exercise to find the representative feature vectors implicitly used.

2 The University of Michigan, All rights reserved

EECS 206 March 25, 2002, Release 2.0 Laboratory #8

Instance Feature
Calculator

Feature
Classifier

Class
Label

Feature
Vector

Class Representative
Feature Vectors

Figure 8.1: Block diagram of a general classifier system.

to decide whether a signal was present or not, and Lab 2 we used correlation to make such
decisions. As such, detection, is generally considered to be a special case of the more general
notion of classification, which refers to decisions among two or more classes. However, this
usage is not universal. For example, “detection” is sometimes used to describe a system
that decides which of 64 potential signals was transmitted to a modem, each representing a
distinct pattern of 6 bits. This lab assignment also generalizes the idea, used in Labs 1 and
2, that decisions are made on a single number or feature. However, as noted before, Lab 7
also used such a generalization.

8.2.2 A classification example

The easiest way to get a feel for classification problems is to consider an example. Suppose
that we have a large number of flowering plants in our garden, each of which belongs to
one of two different types, A and B. We know which plant belongs to each type, but they
all look very similar. Now, we may know which of our plants belong to which type, but we
would also like to be able to classify new plants as either Type A or Type B as we expand
our garden. To do this, we will design a classifier for these plants. In this design, the plants
in our garden with known type will form our design set (or training set). They will be used
for designing the classifier.

36 38 40 42 44 46 48 50 52 54 56
0

2

4

6

8

10

12

14

Flower height (cm)

N
um

be
r

of
 fl

ow
er

s

Type A
Type B

Figure 8.2: A simple example where one feature (plant height) is sufficient to perform
classification. This histogram shows how many plants have a given height.

The University of Michigan, All rights reserved 3

Laboratory #8 March 25, 2002, Release 2.0 EECS 206

35 40 45 50 55 60
0

1

2

3

4

5

6

7

8

9

10

Flower height (cm)

N
um

be
r

of
 fl

ow
er

s
Type A
Type B

35 40 45 50 55 60

30

35

40

45

50

Flower height (cm)

Le
af

 le
ng

th
 (

m
m

)

Type A
Type B

Figure 8.3: An example where a histogram of one feature is not sufficient to perform perfect
classification (left), but a scatter plot of two features shows a clear separation between the
two classes (right).

If we happen to know that Type A plants tend to be taller than Type B plants, this
suggests that we might be able to use the plant’s height as a feature for classification.
Suppose we measure the heights of all of the plants in our garden (our design set) and then
plot a histogram of this data. We might see something like Figure 8.2. This is an unusually
good case. Notice the two clusters on this histogram. The type A plants form a cluster
with heights centered around a mean (i.e. average) of 50 centimeters, and the type B plants
form a cluster with heights centered around a mean of 40 centimeters. Most importantly,
the two clusters do not overlap. This suggests that classification can indeed be based on
plant height.

How do we use this information to classify a new plant (i.e., a new instance)? Intuitively,
if the new plant’s height is closer to the Type A mean of 50 cm than to the Type B mean
of 40 cm, we should classify the plant as type A rather than type B. In this case, we can
use a simple threshold test. If a new plant’s height is greater than 45 cm (which is halfway
between two mean feature values), we classify the new plant as Type A. Conversely, if it’s
height is less than 45 cm we classify it as Type B. In other words, for each class, we use
the mean feature value as the class representative, and we compare the feature value of
a new instance to be classified (it’s height) to the two means and decide the class whose
representative feature value (its mean) is closest to the feature value of the given instance.

Figure 8.3 (left) shows a histogram of plant heights in a more troublesome scenario. In
this case, Type A plants still tend to be taller than Type B plants, but there are a significant
number of plants that we will confuse (that is, misclassify) if we decide exclusively using
this one feature. Though we will typically need to deal with some classification error, we
can often reduce it by adding more features. Suppose we measure not only the height of the
plant but also the average length of its leaves. Now, instead of a histogram, we can look at
the training set of features using a scatter plot, in which we plot a point for each feature
vector in our training set. We we put one of the two features along each of the plot’s axes.
For example, a scatter plot for the two features just mentioned for each plant is shown in
Figure 8.3 (right). Here we again see two distinct clusters, which suggests that classification
may be done well based on these two features together.2

2Note that classification could not be done well using either feature by itself. That is, by itself, neither

4 The University of Michigan, All rights reserved

EECS 206 March 25, 2002, Release 2.0 Laboratory #8

How do we design a classifier for this case? We cannot simply use a threshold on one
of the features. Instead, we will use a more general decision rule, which is based on mean
feature vectors and distances between an instance and the mean feature vectors. First, let
us consider the two features as a two-dimensional vector f = (f1, f2). Thus, if a plant is 52
cm tall and has leaves with average length of 44 mm, our feature vector is f = (52, 44). Now,
given the feature vectors from each plant in our design set of one type, we want to calculate
a mean feature vector for plants of that type. Since the mean feature vector indicates the
central tendency of each feature in a class, we use it as a representative of the entire class.
To calculate a mean feature vector in this case, we first take the mean, m1, of all of the
plant heights for plants of one type. Then we take the mean, m2, of all of the leaf lengths
for plants of the same type. The mean feature vector is then f̄ = (m1,m2). Note that this is
the general procedure for calculating the mean of a set of vectors, regardless of the vector’s
dimension. On the scatter plot in Figure 8.3, we’ve plotted the locations of mean feature
vectors with large symbols.

As with the one-feature case, we will classify new instances based on how close they are to
each of the mean feature vectors. To do this, we still need to know how to calculate distances
between two feature vectors. For simplicity, we will calculate distances using the Euclidean
distance metric3. The Euclidean distance between two vectors is simply the straight-line
distance between their corresponding points on a scatter plot like that in Figure 8.3. To
calculate the distance, d, between two feature vectors (f1, f2) and (m1,m2), we simply use
the formula

d =
√

(f1 − m1)2 + (f2 − m2)2 (8.1)

Euclidean distance generalizes to any number of dimensions; the general formula can be
found later in equation (8.2). Note that the Euclidean distance is essentially the RMS dif-
ference (i.e., RMS “error”) between two vectors4, which we have used repeatedly throughout
this course. Here, though, we refer to the computation as “Euclidean distance”, rather than
RMS difference, to motivate a geometric interpretation of classification.

Now that we have designed a classifier for this case, we can finally consider the classifi-
cation of a new instance. To classify a new instance, we first calculate the distances between
that instance’s feature vector and the mean feature vectors of each class. Then, we simply
classify the instance as a member of the class for which the distance is smallest. Consider
what this means in terms of the scatter plot. Given a new instance, we can plot it’s feature
vector on the scatter plot. Then, we classify based on the nearest mean feature vector. For
a two-class case such as that shown in Figure 8.3, there exists some set of points that are
equally far from both mean feature vectors. These points form a decision line that separates
the plane into two halves. We can then classify based on the half of the plane on which a
feature vector falls. For example, in Figure 8.3, any plant with a feature vector that falls
above the line will be classified as type B. Similarly, any plant with a feature vector that
falls below the line will be classified as type A.

With this classification rule, we can correctly classify almost all of our training instances.
However, note that we’re not classifying perfectly. There is one rogue type B close to the
rest of the type A’s. In general, though, we will need to accept more error than this.

feature is sufficient to separate the two clusters. One can see this by projecting the scatter plot on to either
one of the axes. When we do so, we see that the two classes are intermingled, rather than forming distinct
clusters.

3There are a wide variety of possible distance metrics; Euclidean distance is certainly not the only choice.
4The two calculations actually differ by a scaling factor, since RMS involves a mean while Euclidean

distance involves a sum.

The University of Michigan, All rights reserved 5

Laboratory #8 March 25, 2002, Release 2.0 EECS 206

38 40 42 44 46 48 50 52 54 56 58
36

38

40

42

44

46

48

50

52

Flower height (inches)

Le
af

 le
ng

th
 (

in
ch

es
)

Type A
Type B

Figure 8.4: An example where two features are not as clearly separated.

Of course, two features may not be enough either. If our scatter plot looked like the
one in Figure 8.4, then we can still see the two clusters, but we can’t perfectly distinguish
them based only on these two features. The line we draw for our distance rule will properly
classify most of the instances, but many are still classified incorrectly. Once again, we can
either accept the errors that will be made or we can try to find another feature to help us
better distinguish between the two classes. Unfortunately, visualizing feature spaces with
more than two dimensions is rather difficult. However, the intuition we’ve built for two-
dimensional feature spaces extends to higher dimensions. We can calculate mean feature
vectors and distances in the roughly the same way regardless of the number of dimensions.

8.2.3 A few more classification examples

We’ve looked at a simple classification task with only two classes, but there are some more
examples that are instructive. Consider Figure 8.5(A). In this example, the two clusters fall
right on top of one another, so we will have very poor classification performance. This is an
example where neither of the features assist classification performance very much. In this
case, we need to find better features before we can have much luck with classification. Figure
8.5(B) shows a similar example. Here, feature 2 will help us to improve our classification
performance but feature 1 will not. (Can you see why?) Note that it may be worse to
have a second feature which is bad than to only have one (good) feature. Unfortunately,
determining which features are good and which are bad is nontrivial when we have more
than two (or three) features and can no longer visualize the data.

It is also important to realize that we may have more than just two classes in a classi-
fication problem. Figure 8.5(C) shows an example in which we have four classes that have
distinct clusters in our feature space. The mean feature vectors are indicated on these plots
with large markers. Again, we can use the same distance-based decision rule to classify
instances. That is, we classify a given instance according to the class whose mean feature
vector is closest to its feature vector. We have included approximate) decision lines on this
plot which partition the feature space (i.e., the plane) into four pieces. These indicate which
class a given feature vector will be classified as. Of course, multiple classes can be indistinct,
too. Figure 8.5(D) shows an example for three indistinct classes. Here, the blue (∗) and
green (o) classes are reasonably distinguishable, but we cannot easily separate the red (+)

6 The University of Michigan, All rights reserved

EECS 206 March 25, 2002, Release 2.0 Laboratory #8

7 7.5 8 8.5 9

9.5

10

10.5

Feature 1

F
e

a
tu

re
 2

7 8 9

9.5

10

10.5

11

11.5

Feature 1

F
e

a
tu

re
 2

10 15 20 25
12

14

16

18

20

22

24

Feature 1

F
e

a
tu

re
 2

10 15 20 25 30
5

10

15

20

25

30

Feature 1

F
e

a
tu

re
 2

A B

C D

Figure 8.5: (A) Classes overlap, so the features do not allow much discrimination; these
are bad features. (B) Feature 2 aids discrimination, but Feature 1 does not. (C) An
example with four distinct classes; decision lines are approximate. (D) An example with
three indistinct classes.

class from either of the other two.

8.2.4 Formalizing the feature classifier

In the previous sections, we presented some examples of classifier design and operation.
Here, we’ll formalize these ideas with respect to the general classifier block diagram shown
in Figure 8.1. In particular, we will expand upon the feature classifier shown in that block
diagram. Figure 8.6 shows an expanded block diagram of the feature classifier5.

Suppose we need our classifier to decide among C classes, and suppose the classifier
will be based on a set of N features, forming a feature vector f = (f1, . . . , fN). Our
feature classifier will rely on a set of representative feature vectors, one for each class,
with the representative feature vector for the cth class, denoted f̄c = (f̄c,1, . . . , f̄c,N), where
c = 1, . . . , C.

5The main goal of any feature classifier is to determine which of a set of representative feature vectors a
new instance is most similar to. In this lab, we use Euclidean distance to measure similarity, and so we use a
distance-based feature classifier. Other types of feature classifier are also possible, such as a correlation-based
feature classifier.

The University of Michigan, All rights reserved 7

Laboratory #8 March 25, 2002, Release 2.0 EECS 206

Distance
Calculator

Class
Label

Feature
Vector

Class Representative
Feature Vector

Decision
Rule

Distances to class
representatives

Figure 8.6: Block diagram of a distance-based feature classifier, which makes the decision
in a general classifier system.

Given a set of representative feature vectors (the choice of such will be discussed later),
we can classify new instances using the feature classifier. The feature classifier (seen in
Figure 8.6) has two steps. The first step computes the distances between the input feature
vector and each of the class representatives. As we have done in the previous sections, we
will use Euclidean distance in our system. Equation (8.1) gives the formula for Euclidean
distance in two dimensions. For a general, N -dimensional feature space, we use the following
equation. Let u = (u1, . . . , uN) and v = (v1, . . . , vN) be two N -dimensional vectors (i.e.,
arrays with length N). We calculate the Euclidean distance between them as

d(u,v) =

√√√√ N∑
i=1

(vi − ui)2 =
√

(v1 − u1)2 + (v2 − u2)2 + · · · + (vN − uN)2. (8.2)

Again, we note that, to within a scaling factor, Euclidean distance is equivalent to the root
mean squared error between two vectors.

The second step of the feature classifier applies a decision rule to select the best class
for the input instance. The decision rule that we will use is the nearest class representative
rule. This simply means that the classifier decides the class whose whose representative
feature vector is closest (in Euclidean distance) to the feature vector of the instance being
classified. That is, if f is the feature vector for an instance to be classified, then the decision
rule decides class c if d(f , f̄c) is less than d(f , f̄c′) for all other classes c′6. Other decision rules,
which may weight the distances from the various class representatives, are also possible, but
they will not be considered here.

Note that our DTMF signal classifier from Lab #7 used a simpler “feature classifier”
that was based on neither distance nor correlation. However, with a little extra work it could
have been formulated as either of these types of classifier, most likely without a degradation
of performance.

Let us now discuss how to choose the class representative feature vectors f̄1, . . . , f̄C .
Finding these is the main aspect in feature classifier design. We have previously suggested
that we can find a representative feature vector for a class by taking the mean across some
set of instances that belong to that class. We describe this calculation formally as follows.
Suppose that we have a set of N -dimensional feature vectors from M instances of a given
class c (this the design set of instances for this class). Let f̃i = (f̃i,1, f̃i,2, . . . , f̃i,N) denote

6If it should happen that f is equally closest to two or more class representatives, then an arbitrary choice
is made among them.

8 The University of Michigan, All rights reserved

EECS 206 March 25, 2002, Release 2.0 Laboratory #8

the ith such feature vector. We calculate the mean feature vector, f̄c = (f̄c,1, . . . , f̄c,N), for
this class as

f̄c =
1
M

M∑
i=1

f̃i =
1
M

(f̃1 + f̃2 + · · · + f̃M). (8.3)

Alternatively, we can say that the jth element of the mean feature vector, f̄c, is

f̄c,j =
1
M

M∑
i=1

f̃i,j =
1
M

(f̃1,j + f̃2,j + · · · + f̃M,j). (8.4)

8.2.5 Measuring the performance of a classifier

The performance of a classifier is based on the how many errors it makes. One good way
to characterize the performance of a classifier is with a confusion matrix K, which simply
measures how often members of one class were confused with members of another class.
Specifically, when the classifier recognizes N classes, then the confusion matrix K = [Ki,j]
is an N × N matrix, whose element Ki,j in the ith row and jth column is the fraction of
those times that class j occurs but the classifier produces class i. That is,

Ki,j =
of class j instances classified as i

of class j instances
(8.5)

For example, the following is confusion matrix for a hypothetical four-class classifier:

K =

.9 .03 .01 .02
.03 .95 .01 .03
.05 .01 .96 .1
.02 .01 .02 .85

 (8.6)

The diagonal elements, Kn,n, show what fraction of instances from the the nth class were
correctly classified. The .9 in the upper left corner, for instance, indicated that 90% of
instances from the first class were classified as belonging to the first class. Thus, higher
diagonal elements are desirable.

The off-diagonal element Kn,m indicates what fraction of instances from the mth class
were misclassified as belonging to class n. In the example above, for instance, the .02 in the
upper right corner indicates that 2% of instances in the fifth class were incorrectly classified
as belonging to the first class. Thus, we hope that off-diagonal elements are as small as
possible. The confusion matrix for a perfect classifier will be an identity matrix (i.e., ones
on the diagonals, zeros elsewhere).

Data usage when designing classifiers

When designing classifiers and testing their performance, it is important to note that classi-
fiers generally perform better on the training data used in their design than on new data of
the same general type. Thus, to objectively assess the performance of a classifier, one must
test it on a different data set, usually called a test set, than the one on which it was designed.
To see why, consider the extreme case in which the training data contains just one feature
vector for each class, which becomes the mean feature vector for its class. In this case, the
resulting classifier will perfectly classify every feature vector in the training set. However,

The University of Michigan, All rights reserved 9

Laboratory #8 March 25, 2002, Release 2.0 EECS 206

it may not do very well at all when classifying other data. In more realistic cases where
the training data has quite a few instances of each class, the performance of the classifier
on the training data will usually be somewhat (but usually not significantly) better than on
test data. Nevertheless, it is widely accepted that testing a classifier on independent data
is good practice. Thus, when a certain amount of data is available for design, it is usually
divided into two sets — one for training, the other for testing.

To keep things simple, in this lab we will not separate our set of instances into separate
design sets and testing sets. Thus, it is important to know that we may not be accu-
rately characterizing our system’s performance in the “real world.” You will be given an
opportunity to test our vowel classifier and see how well it actually performs on your voice.
Specifically, all of the vowel instances provided in this lab were taken from a single speaker.
How does this affect the performance of the system for other speakers? Can you come up
with a better set of representative feature vectors (possibly by collecting vowel samples from
a variety of speakers)?

8.2.6 Vowel Classification

So far, we have discussed a general-purpose framework for performing classification. In this
section, we will specifically discuss how to apply these techniques to the classification of
vowels in speech signals.

Vowels in speech are nearly periodic segments of the speech signal. From our studies of
the Fourier Series, we know that these segments of the signal are thus approximately equal
to the sum of sinusoids with harmonically related frequencies. As with the DTMF signals in
Lab #7, the time-domain provides relatively little information about the signal. So, as with
the DTMF signals, this suggests that we need to examine vowels in the frequency domain.
Figure 8.7 shows examples of the magnitude spectrum (in decibels7) of two different vowels.
The plots on the left correspond to an “ee” vowel (as in the word tree), while the plots on
the right correspond to an “ah” vowel (as in the word father). Also shown is a smoothed
version of each spectrum, which shows its general trend.

There are a number of interesting things to note about these plots. First, we can see
the peaks that correspond to the harmonics that make up the periodic signal. Notice that
the peaks are spaced more closely in some plots than others, corresponding to a lower
fundamental frequency and thus a longer fundamental period. As illustrated by this figure,
though, the fundamental frequency of the signal is independent of the vowel being produced.
Notice that the overall shape of the frequency spectrum is different between the two vowels,
but remains relatively constant between the two instances of each vowel, as can be seen from
the smooth versions. This shape determines the timbre8 of the sound, and, correspondingly,
the “sound” of the vowel. Notice that there are peaks in the smoothed spectrum at various
places. These peaks are called formants; it is generally known that the position of these
formant is the primary feature that distinguishes one vowel from another, i.e. that makes
one vowel sound different from another.

Unfortunately, there is no solid definition of a “formant,” and they are remarkably dif-
ficult to identify automatically. In fact, there is some disagreement as to what constitutes
a formant in some cases. In this lab, we’ll work with two sets of features that hopefully
capture the information contained in the formant positions. In Lab #9, we’ll investigate

7To convert a number, x, into decibels, we use the formula xdB = 20 log10(x).
8Pronounced “tambor.”

10 The University of Michigan, All rights reserved

EECS 206 March 25, 2002, Release 2.0 Laboratory #8

0 1000 2000 3000 4000

−80

−70

−60

−50

−40

−30

−20

Frequency (Hz)

|S
(ω

)|
 (

de
ci

be
ls

)
"ee" Vowel

0 1000 2000 3000 4000
−80

−70

−60

−50

−40

−30

−20

Frequency (Hz)

|S
(ω

)|
 (

de
ci

be
ls

)

"ah" Vowel

0 1000 2000 3000 4000

−80

−70

−60

−50

−40

−30

−20

Frequency (Hz)

|S
(ω

)|
 (

de
ci

be
ls

)

"ee" Vowel

0 1000 2000 3000 4000

−80

−70

−60

−50

−40

−30

−20

Frequency (Hz)

|S
(ω

)|
 (

de
ci

be
ls

)

"ah" Vowel

Figure 8.7: The magnitude spectrum (in decibels) of four vowel signals. The plots on the
left correspond to two instances of an “ee” vowel, as in the word tree. The plots on the
right correspond to two instances of an “ah” vowel, as in the word father. The solid line is
a smoothed version of the spectrum, which shows the general trends of the spectrum.

the use of another, somewhat more sophisticated feature for vowel recognition. This fea-
ture actually models speech production, and thus should more readily capture the relevant
aspects of the vowel signal.

The first feature set that we use in this lab will be the formant features. The formant
features attempt to locate the formants themselves using a simple algorithm. This algorithm
first uses the DFT to compute the spectrum of a short segment of a vowel. Then, the
spectrum is smoothed using a weighted averaging filter. Finally, the algorithm returns
frequencies of the largest peaks on the smoothed signal that occur above and below 1500
Hz. Thus, there are two formant features, so the resulting feature vector is two-dimensional.

The second feature set, the filter bank features, are quite similar to the features used in
the DTMF decoder. The filter bank features compute the energy (in decibels) of the speech
signal after it has been passed through a bank of six bandpass filters. We will use bandpass
filters with center frequencies of 600 Hz, 1200 Hz, 1800 Hz, 2400 Hz, 3000 Hz, and 3600 Hz.
Thus, the resulting feature vectors are six-dimensional.

Note that there are a large number of vowels that we could possibly consider. However,
for simplicity we will restrict attention to just five vowels: “ee” (as in tree), “ah” (as in
father), “ae” (as in fate), “oh” (as in boat), and “oo” (as in moon). Each of these five
vowels will be its own class.

The University of Michigan, All rights reserved 11

Laboratory #8 March 25, 2002, Release 2.0 EECS 206

8.3 Some Matlab commands for this lab

• Converting a value into decibels: Expressing a numerical value in decibels com-
presses the range of values using a logarithmic transformation. Thus allows us to see
features that might otherwise not be visible. The decibel transformation is particu-
larly useful when looking at the magnitude spectrum of audio signals, since hearing
is based on a logarithmic amplitude scale. Given a value x, we convert it to decibels
using the command

>> x_dB = 20*log10(x);

This command can be also used to simultaneously convert a vector of values to decibels.

• Calculating features for a vowel signal: As indicated, the features we would
like to consider in order to classify a vowel signal are based on the signal’s spectrum.
We provide functions to calculate the two feature sets described in this laboratory.
Each function takes an audio waveform, x, and (optionally) the sampling frequency in
samples per second, fs. (If no sampling frequency is specified, a sampling frequency
of 8192 samples per second is assumed.) Both functions return a row vector, y, that
contains the features calculated from the waveform.

To compute the “formant features,” use calc_formants.m:

>> y = calc_formants(x,fs);

Similarly, to compute the “filter bank features,” calc_fbank.m:

>> y = calc_fbank(x,fs);

• Working with features vectors in Matlab: In this lab, we will adopt the con-
vention that a feature vector is a row vector, and that a set of feature vectors, such
as a set of class representatives or a set of testing data, is stored in a matrix such
that there is one feature vector per row and one feature per column. This allows us
to easily compute mean feature vectors from such a matrix.

When computing Euclidean distances, note that the computation is almost the same
as that which we used for computing RMS error. The only difference is that we replace
the mean operation by a summation.

• Advanced plotting: You may recall from Lab #1 that we can use Matlab’s plot
command to change the color and style of plotted lines. A line-style string consists
of as many as three parts. One part specifies a color (for instance, ‘k’ for black or ‘r’
for red). Another part specifies the type of markers at each data point (for instance,
‘*’ uses asterisks while ‘o’ specifies circles). The third part specifies the type of line
used to connect the points (‘:’ specifies a dotted line, while ‘-’ specifies a solid line).
Note that these three parts can occur in any order, and all are optional. If no color is
specified, one is chosen automatically. If no marker is specified, a marker will be not
be plotted. If a marker is specified but a line type is not, then lines will not be drawn
between data points. Thus, the command:

>> plot(x1,y1,'rx',x2,y2,'k:');

12 The University of Michigan, All rights reserved

EECS 206 March 25, 2002, Release 2.0 Laboratory #8

will plot x1 versus y1 using red verb-x-’s with no connecting line, and also x2 with y2
with a dotted connecting line but no marker. See help plot for more details.

Additionally, we can change the width of lines and the size of markers using additional
parameter-pairs. For instance, to increase the line width to 2 and the marker size to
18, use the command

>> plot(x1,y1,'rx--','Linewidth',2,'Markersize',18);

• Executing the feature classifier: The function feature_classifer is an incom-
plete function that you will use to automatically classify a feature vector (or a set
of feature vectors) based on the distances to a set of representative feature vectors.
The function takes two inputs. The first input, M, is a matrix of the representative
feature vectors, with one feature vector per row. Note that the vector on the first
row corresponds to the first class, the second row to the second class, and so on. The
second input parameter, fmatrix, can either be a single feature vector to be classifed
(stored as a row vector) or a matrix of feature vectors to be classified, with one feature
vector per row. To call feature_classifier, use the command:

>> labels = feature_classifer(M,fmatrix);

The function outputs a column vector of class labels, labels, with one label for each
row of fmatrix. The labels are numbers that indicate which representative feature
vector the corresponding instance is closest to. Thus, if the first element of labels
is a 3, it means that the feature vector in the first row of fmatrix is closest to the
representative feature vector in the third row of M.

• Calculating confusion matrices: We provide you with a function, confusion_matrix,
that computes a confusion matrix for you. Note that confusion_matrix calls your
feature_classifier function, so it will not work until you have completed that func-
tion. To compute a confusion matrix, we need the matrix of representative feature
vectors used by that classifier and a set of testing data for each class. Thus, if our
matrix of representative feature vectors is M and class1, class2, and class3 are ma-
trices that contain feature vectors from our testing set with instances of each of three
classes (with one feature vector per row), we compute the 3×3 confusion matrix using
the command:

>> K = confusion_matrix(M,class1,class2,class3);

Note that the function confusion_matrix works for any number of classes. The size
of the confusion matrix is determined by the number of input parameters.

8.4 Demonstrations in the Lab Section

• Introduction to Classification

• Evaluating a classifier

• Vowel spectra

• Vowel features

The University of Michigan, All rights reserved 13

Laboratory #8 March 25, 2002, Release 2.0 EECS 206

8.5 Laboratory Assignment

1. (Examining one vowel instance.) Download the file lab8_data.mat. This file contains
a variable called vowel1, which is a one half-second recording of a vowel sound with
a sampling frequency of 8192 samples per second.

(a) Use soundsc to listen to this vowel.

• [2] To which of the five vowel classes does this vowel belong?

(b) Take the DFT of vowel1. In two subplots of the same figure, plot the magnitude
of the DFT and the magnitude of the DFT in decibels. Only plot the first half of
the DFT coefficients in each plot. Also, make sure that you label the x-axis with
the frequency in Hertz, not the DFT coefficient number. (Hint: The maximum
frequency showing on your plot should be 4096 Hz, which is one half of the
sampling frequency.)

• [4] Include this figure in your report.
• [3] Compare the two plots. Are there aspects of the spectrum that are easier

to see in one of the plots than in the other?
• [2] From this figure, estimate the fundamental frequency of the vowel sound.
• [2] Estimate the frequencies (in Hz) of the three most prominent formants.

(c) Download the files calc_formants.m and calc_fbank.m. You will use them to
calculate features for this vowel.

• [2] Calculate and include the formant feature vector for this vowel.
• [2] Compare the calculated features to your estimate of the formant locations.
• [2] Calculate and include the filter bank feature vector for this vowel.
• [2] What are the center frequencies of the filters that have the greatest output

amplitude? Compare this to your estimated formant locations.

2. (Mean feature vectors and hand classification.) lab8_data.mat also has several other
variables, including matrices containing features for 50 instances of each vowel. The
variables ah_form, ee_form, ae_form, oh_form, and oo_form contain formant feature
vectors for each vowel. Each matrix has 50 rows (one for each instance) and two
columns (one for each feature value). Similarly, the variables ah_fbank, ee_fbank,
ae_fbank, oh_fbank, and oo_fbank contain the filter bank feature vectors with one
row per instance.

(a) Calculate the mean feature vectors for each vowel class and for both feature
classes.

• [4] Include the five mean formant feature vectors in your report. Make sure
you label them.

• [4] Include the five mean filter bank feature vectors in your report. Again,
make sure you label them.

(b) (Generate a scatter plot) We would like to see how separable the classes are from
the formant feature vectors. To do this, you’ll create a scatter plot that plots the
first formant location versus the second formant location. Plot each of the feature
vectors, using a different color and marker symbol for each vowel. Make sure you
include a legend. Also, plot the mean vector for each class on your scatter plot.

14 The University of Michigan, All rights reserved

EECS 206 March 25, 2002, Release 2.0 Laboratory #8

(Hint: To make your mean vectors stand out, you should increase the line width
and marker size for just those points.)

• [10] Include the scatter plot in your report.
• [4] Interpret this scatter plot. Are all of the classes distinct and easily sepa-

rated? Do you expect expect any vowels to be frequently confused? Do you
expect any vowels to frequently be classified correctly?

Food for thought: What would happen if we only used one of these two features
for classification? Which would give us better classification results? Do you think
that a third formant feature might improve class separation?

(c) (Hand classification) Now, you’ll “classify” the signal vowel1 by hand. To do
this, you’ll need to compute the distance between the instance and the five mean
feature vectors.

• [5] Compute the distances between the formant feature vector that you gen-
erated for vowel1 and the five mean formant feature vectors.

• [5] Compute the distances between the filter bank feature vector that you
generated for vowel1 and the five mean filter bank feature vectors.

• [3] Using the nearest-representative decision rule, use the above results to
classify vowel1. Do the results for both feature sets agree? If not, which
feature set produces the correct answer?

3. (Complete and use the feature classifier code.) In this problem, you’ll complete and
then use a function, called feature_classifier.m, that does this classification for
us automatically. As described in the background section, the function takes as input
a matrix of representative feature vectors and a matrix of instances to classify. We
output a label for each of the instances in the input.

(a) Complete the function. (Hint: You should use two for loops. One loops over the
rows of the matrix of test instances. Then, for each instance, loop over the rows
of M and compute the distances. To make the classification for each instance, find
the position of the smallest distance and store it in labels.)

• [12] Include your code in your report.

(b) (Test feature_classifier on the formant features.) Place your mean formant
feature vectors into a matrix, M_form with one feature vector per row. For con-
sistency, put “oo” in the first row, “oh” in the second row, “ah” in the third row,
“ae” in the fourth row, and “ee” in the fifth row. Call your feature_classifier
function using this matrix and ee_form. (Hint: To make sure your function
works correctly, you should compare its output to the completed and compiled
function feature_classifier_demo.dll. If you did not successfully complete
feature_classifier, you can use this demo function throughout the remainder
of the lab.)

• [2] What fraction these instances are properly classified?
• [3] Calculate the fraction of the instances that are misclassified as each of

the incorrect classes. That is, determine the fraction that are misclassified
as “ah,” the fraction misclassified as “ae,” and so on.

• [1] From this data, what vowel is “ee” most often misclassified as?

The University of Michigan, All rights reserved 15

Laboratory #8 March 25, 2002, Release 2.0 EECS 206

(c) Repeat the above with the filter bank features, this time using the matrix ee_fbank
and generating the matrix M_fbank. Use the same order for your classes. (Again,
you should compare your function’s output to the output of feature_classifier_demo.dll).

• [2] What fraction these instances are properly classified?
• [3] Calculate the fraction of the instances that are misclassified as each of

the incorrect classes.
• [1] From this data, what vowel is “ee” most often misclassified as?

4. (Compute and interpret confusion matrices.) Download the file confusion_matrix.m.
In this problem, you will compute and interpret confusion matrices for the two feature
classes.

(a) Use confusion_matrix to compute the confusion matrix for the formant features.
Use M_form as your set of class representatives. Use the vowel following vowel
order for your remaining input parameters: “oo,” “oh,” “ah,” “ae,” and “ee.”
(This should be the same as the order as the classes in M_form).

• [3] Include this confusion matrix in your report. Label each row and column
with the corresponding class.

• [2] In Problem 3b, you computed a portion of the confusion matrix. Identify
that portion and verify that your results were correct.

• [2] From this confusion matrix, determine how many instances of “ee” vowels
were misclassified as “oo” vowels.

• [1] Which vowel is most commonly misclassified using this feature set?

(b) Use confusion_matrix to compute the confusion matrix for the filter bank fea-
tures. Use M_fbank as your set of class representatives. Use the vowel following
vowel order for your remaining input parameters: “oo,” “oh,” “ah,” “ae,” and
“ee.” (This should be the same as the order as the classes in M_form).

• [3] Include this confusion matrix in your report. Label each row and column
with the corresponding class.

• [2] In problem 3c, you computed a portion of the confusion matrix. Identify
that portion and verify that your results were correct.

• [2] From this confusion matrix, determine how many instances of “ae” vowels
were misclassified as “ah” vowels.

• [1] Which vowel is most commonly misclassified using this feature set?

(c) Finally, compare the two confusion matrices.

• [2] Which feature set has the best performance overall?
• [2] Based on the performance of these classifiers, comment on the spectral

similarities between the various vowels. That is, are any of the vowel classes
particularly like any of the other vowel classes?

5. On the front page of your report, please provide an estimate of the average amount of
time spent outside of lab by each member of the group.

16 The University of Michigan, All rights reserved

EECS 206 March 25, 2002, Release 2.0 Laboratory #8

Food for thought:

• As was mentioned in the background section, all of the vowel instances used here were
taken from a single speaker. As such, this classifier will probably perform better on
that speaker’s vowels than on the rest of the population. The compiled functions
formant_classifier.dll and fbank_classifier.dll let you test the classifier de-
signed here on your own voice. When you execute either of these functions (which
require no input parameters), Matlab will immediately record one quarter-second
from the microphone, compute the features, and classify the vowel. Use this function
to test the classifier on your own voice for various vowels. Record how well it does on
each vowel. Is performance better or worse than what is indicated by the confusion
matrices you calculated?

• The above function also returns the set of features that it computed from the recorded
vowel. If you collect these features into series of matrices of testing data, you can use
confusion_matrix.m to formally compute the performance of this classifier on your
voice.

• How well does the function work on other people’s voices? Are there certain people
for whom it works very well? Very poorly?

• The compiled functions listed above take an optional input parameter, which is a
matrix of representative feature vectors. Since the current classifier is designed using
only one speaker’s vowels, maybe you can improve the performance by coming up with
a better set of representative feature vectors. To do this, consider gathering a set of
vowels from a number of different speakers and combining them into a set of mean
feature vectors. Can you improve the performance of the system?

The University of Michigan, All rights reserved 17

