
EECS 206 January 7, 2002, Release v2.0 Matlab Tutorial

An Introduction to Matlab

1 What is Matlab?

The Mathworks, Inc., makers of Matlab, claims that Matlab is “the language of technical
computing.” By and large, they are right. Matlab is widely used in a great number
of scientific fields. For those who work with signals and systems, Matlab is a de facto
standard. One of the main reasons for Matlab’s popularity arises from its wide array of
uses. So what is Matlab?

1.1 Matlab is a mathematics environment that can easily handle
vectors and matrices

Matlab was originally written to provide an easy-to-use interface to the mathematical
subroutines included in LINPACK and EISPACK. These two packages are sets of subroutines
written in FORTRAN for a wide variety of linear algebra operations. Matlab’s original
focus on linear algebra means that it has very well developed capabilities for handling
vectors and matrices1. For our purposes, both vectors and matrices are examples of signals
– a mathematical environment that can easily handle vectors and matrices makes working
with signals just as easy.

Let’s look at an example to see exactly what this buys us. Suppose that we have two
signals, x and y, each of which is simply an array with 100 elements. How would we add
these signals in a language like C++? The easiest way probably involves the following
fragment of code:

double z[100];
for(int i = 0; i < 100; i++)
{

z[i] = x[i] + y[i];
}

This is a simple enough piece of code, but it is not as clear as it could be. In Matlab we
can simply do the following:

z = x + y;

Simply adding two signals (vectors or matrices) with the same size automatically per-
forms an element-by-element sum. Which of these two is easier to understand? Using this
Matlab syntax, we can see immediately what is happening. Matlab takes care of any
necessary looping for us. This is a very common feature in Matlab; many operations that
you would normally need to perform explicitly can be performed implicitly in Matlab.

1Vectors and matrices are simply one- and two-dimensional arrays, respectively

The University of Michigan, All rights reserved 1

Matlab Tutorial January 7, 2002, Release v2.0 EECS 206

1.2 Matlab is tool for visualizing data

You are probably very familiar with how much easier it is to interpret a graph than a table
of numbers or a formula. By producing a plot of the relevant data or formula, you can
gain a visual sense of what is going on that otherwise might be lacking. This is one of
the motivations behind the use of graphing calculators in high school math. Simply put,
Matlab is one of the best tools for visualizing data that is currently available.

You will find that these capabilities very useful in your study of signals and systems. By
looking at a signal, you can often gain some insight into how it behaves. The same applies
to systems. Certain systems are said to “smooth” signals because of the visual appearance
of the resulting signal. In certain cases (like image processing), the visual result of a system
is the primary reason for its use.

1.3 Matlab is a prototyping language

In many respects, Matlab is like a UNIX shell. It has the same sort of interactive interface
for normal usage, but it also has most of the standard programming language constructs
like loops and conditional statements. You can put commands into a file and call it as a
script. Alternatively, you can write functions with input and output parameters.

The main difference between Matlab and programming languages like C++ is the speed
with which you can implement algorithms (especially mathematical algorithms). This is
because Matlab is operates at a higher level than many other programming languages. It is
also usually easier to understand Matlab code than code in other programming languages.
The sum-of-vectors example given above is a prime example of this. All of this makes
Matlab a very good prototyping language. It is easy to whip up a “proof of concept”
program in Matlab to make sure that your algorithm actually works. Then, you can code
a “development” version using a more traditional compiled programming language.

1.4 Matlab can do more...

One of the key rules of thumb to remember about Matlab is that it can perform almost
any mathematical task you could want. Often, there will be a built-in function to do what
you want. If it’s not a part of the main Matlab distribution, it is probably available as
part of an add-on toolbox. Some toolboxes can be purchased from the Mathworks, while
others are developed and distributed for free by third party developers.

In this course, we will be focusing on the core Matlab distribution and the signal
processing toolbox. (We will also be doing some image processing, but you will not need
the image processing toolbox for this course.) We recommend that you consider purchasing
the student version of Matlab and the signal processing toolbox; you find it to be useful
throughout your academic career.

2 Demos for the first tutorial lab section

1. Recording, displaying, and manipulating signals in Matlab

2. Image Compression via JPEG

3. DTMF (Touch-tone) telephone tones

2 The University of Michigan, All rights reserved

EECS 206 January 7, 2002, Release v2.0 Matlab Tutorial

3 Using Matlab: The basics

3.1 Starting Matlab

The first step to using Matlab is to bring up the program on your computer system.
Starting Matlab on a Windows machine or a Macintosh generally involves finding the
appropriate icon either on the desktop or in the Start menu. At a UNIX system, simply
typing “matlab” should be sufficient. Note that you can run Matlab remotely on UNIX
servers through telnet or ssh, but Matlab version 6 generally requires an X-Windows
connection to run2. When Matlab is finished loading, you’ll see the Matlab program
window, possibly with several subwindows. The most important window is the command
window, which contains a command prompt that looks something like this:

>>

3.2 How to get help

So now what do you do? Well, the first step is to make use of Matlab’s single most useful
command:

>> help

See that list of categories? You can call help on any of these categories to get an organized
list of commands with brief discussions. Then, you can call help on any of the commands
for a complete description of that command. Select a category that looks interesting and
call help on it. Do the same for whichever command strikes your fancy. For instance:

>> help elmat
>> help why

Most often you’ll use help in this last capacity. Unfortunately it isn’t so helpful if you
don’t know the name of the command you’re looking for. One way around this is to use the
lookfor command. For instance, if you know you’re looking for a function that deals with
time, you can try:

>> lookfor time

This searches the first line of the every help description for the word “time.” This can take a
while, though (depending upon your system’s configuration). You should get into the habit
of reading the help on every new command that you run across. So call help on both help
and lookfor. There’s some useful information there.

Another good source of help is the Matlab helpdesk. It may or may not be available
on your system; to find out, simply try:

>> helpdesk

If it is available, you will see a help window. The Matlab helpdesk contains all of the help
pages that you can find using help or lookfor, along with many other useful documents.
The helpdesk is also easily searchable (and often much faster than lookfor), so you would
benefit from becoming familiar with this tool.

2Previous versions run by default in a terminal window.

The University of Michigan, All rights reserved 3

Matlab Tutorial January 7, 2002, Release v2.0 EECS 206

3.3 Using Matlab as a calculator (with variables)

Not surprisingly, you can use Matlab to do arithmetic. It operates very much like you
might expect, employing infix arithmetic like that used on standard calculators. Matlab
can evaluate simple expressions or arbitrarily complicated ones with parentheses used to
enforce a particular order of operations.

>> 6 * 7
>> (((12 + 5) * 62/22.83) - 5)^2.4

(The ^ operator performs exponentiation). Notice that when you execute these commands,
Matlab indicates that ans = 7.4977e+003 (or whatever). This indicates that the result
has been stored in a variable called ans. We can then refer to this quantity like this:

>> 0 * ans
>> ans + 1

It is important to note that the each of these commands overwrites ans. If we want to
save an answer, we can simply perform assignment, like this:

>> my_variable = 42

This is the only declaration of my_variable that is needed, and we can use this variable
later just as we could with ans. Further, my_variable will retain its value until we explicitly
assign something else to it. We can clear variables, and typing who or whos will list what
variables we have in our workspace.

Using variables, then, is straightforward.

>> x = 5.4
>> y = 2
>> z = (my_variable*y)^x

Note that sometimes you don’t need or want to see what Matlab returns in response
to a particular command. To suppress the output, simply add a semicolon, ;, after the
command. Try any of the above commands with and without the semicolon to see what
this does.

We also have access to a wealth of standard mathematical functions. Thus, we can if we
want to calculate the sine of the square-root of two and store it in a variable called var, we
simply type:

>> var = sin(sqrt(2))

Type help elmat to see how to call most of the elementary mathematical functions like
these. There are also a number of constants built into Matlab that are very useful. The
number π is referred to as pi (note that Matlab is case sensitive!). Both i and j default
to

√−1, but you can still use either (or both) as variable names if you like. You should
glance at help i so that you can see the various options for building complex numbers.

4 Vectors, Matrices, and Arrays

So far, we’ve been using Matlab to deal with scalar numbers. The real power of Matlab,
though, comes from its ability to handle vectors and matrices. In Matlab, vectors and
matrices are simply one-dimensional and two-dimensional arrays, respectively. An array is
simply a collection of numbers, each of which is indexed by an n-tuple. For an array, the

4 The University of Michigan, All rights reserved

EECS 206 January 7, 2002, Release v2.0 Matlab Tutorial

dimension is equal to the length of the n-tuple. For instance, consider the following vector
and matrix:

v =

1
2
3
4

 M =

1 2 3
4 5 6
7 8 9

 (1)

To access the 3 from vector v, we simply need to know that it is in the third row. Thus
the vector is one-dimensional. To access the 6 in the matrix M , though, we need to know
that it is in the second row and the third column. We index the 6 using the pair (2,3),
and so matrix is two-dimensional. Matlab arrays can have any number of dimensions. In
practice, though, we will only need vectors and matrices.

There are many different ways to build up and manipulate arrays in Matlab. For
instance, consider (and execute) the following commands:

>> a = [1 2 3 4 5 6 7]
>> b = [1, 2, 3, 4, 5, 6, 7]
>> c = [1; 2; 3; 4; 5; 6; 7]
>> d = [1 2 3 4; 5 6 7 8; 9 10 11 12]

The first two commands both build up the same vector, a 1×7 row-vector3. The third
command builds up a 7×1 column-vector with the same elements. The fourth command
builds a 3×4 matrix. Notice that the comma (or the space) within the square brackets
concatenates horizontally and the semicolon concatenates vertically. The elements being
concatenated do not need to be scalars, either:

>> e = [a b]
>> f = [a; b]
>> g = [c d]

Oops! That last command produced an error. When concatenating arrays, the concatenated
arrays must have sizes such that the resulting array is rectangular.

The single apostrophe, ', is Matlab’s transposition operator. It will turn a row-vector
into a column-vector and vice versa. Similarly, it will make an n×m matrix into an m× n
matrix. To see how this works, type d' and look at the results. (Warning: ' is actually a
complex conjugate transpose, so complex numbers will have the sign of their imaginary parts
changed. To perform a straight transposition, use the .' operator. For real arrays, both
operators are identical.) Other useful commands for matrix manipulation include flipud
and fliplr, which mirror matrices top-to-bottom and left-to-right, respectively. Look at
help elmat for more useful functions.

Building small arrays by hand is fine, but it can become very tedious for larger arrays.
There are a number of commands to facilitate this. The ones and zeros commands build
matrices that are populated entirely with ones or zeros. The eye command builds identity
matrices. repmat is especially useful for making matrices out of vectors. diag builds
diagonal matrices from vectors, or returns the diagonal (vector) of a matrix. Check the
help for all of these commands. For an example, try these:

>> ones(5,3)
>> zeros(3,4)
>> zeros(5)
>> eye(4)

3In Matlab, indices are given as row × column.

The University of Michigan, All rights reserved 5

Matlab Tutorial January 7, 2002, Release v2.0 EECS 206

The colon operator is one way of creating long vectors that are useful for indexing (see
the next section). Execute the following commands:

>> 1:7
>> 1:2:13
>> 0.1:0.01:2.4

Each of these commands defines a row-vector. With only two arguments, as in the first
command, the colon operator produces a row vector starting with the first argument and
incrementing by one until the second argument has been reached. The optional middle
argument (seen in the second two commands) provides a different increment amount. The
colon operator is extremely useful, so it is recommended that you check out help colon for
more details. Play with some other combinations of parameters to familiarize yourself with
the behavior of this operator.

5 Array Arithmetic

Matlab allows you to perform mixed arithmetic between scalars and arrays as well as two
different types of arithmetic on vectors and arrays. Mixed scalar/array arithmetic is the
most straightforward. Adding, subtracting, multiplying or dividing a scalar from an array
(or an array from a scalar) is equivalent to performing the operation on every element of
the array. It is also useful to note that most of the provided mathematical functions (like
sqrt and sin) operate in a similar element-by-element fashion. Thus, the commands

>> t = 0:.1:pi;
>> sin(t)

return a 32-element vector (the same size as t) containing the sine of each element of t.
If we have two arrays, addition and subtraction is also straightforward. Provided that the

arrays are the same size, adding and subtract them performs the operation on an element-
by-element basis. Thus, the (3,4) element in the output (for instance) is the result of the
operation being performed on the (3,4) elements in the input arrays. If the arrays are not
the same size, Matlab will generate an error message.

For multiplication, division, exponentiation, and a few other operations, there are two
different ways of performing the operation in question. The first involves matrix arithmetic,
which you may have studied previously. You may recall that the product of two matrices
is only defined if the “inner dimensions” are the same; that is, we can multiply an mxn
matrix with an nxp matrix to yield an mxp matrix, but we cannot reverse the order of the
matrices. Then, the (p,q) element of the result is equal to the sum of the element-by-element
product of the pth row of the first matrix and the qth column of the second. Division and
exponentiation are defined with respect to this matrix product. It is not imperative that you
recall matrix multiplication here (most likely you will see it in a linear algebra course in the
future); however, it is important that you note that in Matlab the standard mathematical
operators (*, /, and ^) default to these forms of the operations.

A form of multiplication, division, and exponentiation for arrays that is more useful for
our purposes is the element-by-element variety. To use this form, we must use the “dot”
forms of the respective operators, .*, ./, and .^). Once again, the arrays must have the
same dimensions or Matlab will return an error. Thus, the commands

>> [1 2 3 4].*[9 8 7 6]
>> [7; 1; 4]./(1:3)'
>> 2.^[1 2 3 4 5 6]

6 The University of Michigan, All rights reserved

EECS 206 January 7, 2002, Release v2.0 Matlab Tutorial

perform element-by-element multiplication, division, and exponentiation. Note that the .^
form is necessary even for scalar-to-array exponentiation operations.

The array arithmetic capabilities of Matlab contribute greatly to its power as a pro-
gramming language. Using these operators, we can perform mathematical operations on
hundreds or thousands of numbers with a single command. This also has the side effect of
simplifying Matlab code, making it shorter and easier to read (usually).

6 Indexing

6.1 Basic indexing

To make arrays truly useful, we need to be able to access the elements in those arrays. First,
let’s fill a couple of arrays:

>> a = 5:5:60
>> d = [9, 8, 7, 6 ; 5, 4, 3, 2]

Now, let’s access elements in them:

>> a(6)
>> a(3) = 12
>> d(2,3)

The second command retrieves the sixth element from the vector a. The third assigns a
number to the third element of the same vector. For the fifth command, the order of the
dimensions is important. In Matlab, the first dimension is rows and the second dimension
is columns. Note particularly that this is the opposite of (x, y) indexing. Thus, the third
command retrieves the element from row two, column three.

6.2 Single number indexing

We can also index into matrices using single numbers. In this case, the numbers count down
the columns. This is called “column-major” and is the opposite of array indexing in C or
C++. For instance, notice what happens when you use the following commands:

>> d(2)
>> d(3)
>> d(7)

6.3 Vector indexing

It is not necessary to index arrays only with scalars. One of the most powerful features of
Matlab is the ability to use one array to index into another one. For instance, consider
the following commands:

>> a([1 4 6])
>> b(3:7)
>> c(2:2:end)

These commands return a subset of the appropriate vector, as determined by the indexing
vector. For instance, the first command returns the first, fourth, and sixth elements from the
vector a. Notice the use of the end keyword in the third command. In an indexing context,
end is interpreted as the length of the currently indexed dimension. This is particularly
useful because Matlab will return an error if you try to access the eighth element of a

The University of Michigan, All rights reserved 7

Matlab Tutorial January 7, 2002, Release v2.0 EECS 206

seven-element vector, for instance. In general, indices must be strictly positive integers less
than the length of the dimension being indexed. Thus, unlike C or C++, the indices begin
at one rather than at zero.

Using multiple indices into multi-dimensional array is slightly more complicated than
doing so with vectors. Consider the following commands:

>> d([1 3],2)
>> d([2 3],[1 4])
>> d(2,:)

The first command, as you might expect, returns the first and third elements of the second
column. The second command returns the second and third rows from the first and fourth
columns. Note particularly that this command does not return the individual elements at
(2,1) and (1,4). (To index individual elements in this manner, we need to use single-index
method along with the sub2ind command). The colon operator in the second command is
a shortcut for 1:end; thus, the third command returns all of the second row.

6.4 Finding the size of an array

Two very useful commands that can be used to facilitate indexing are size and length.
size returns a vector containing the length of each dimension of an array. Alternately,
size can be used to request the length of a single dimension. length is primarily useful
for vectors when you’re not sure about their orientation. length returns the length of the
longest dimension. Thus, length(v) is the same whether v is a row-vector or a column-
vector, but size(v,1) will only properly return the length of a column-vector.

6.5 Vector indexing to modify arrays

It is important to note that all of these indexing techniques are used not only to retrieve
many elements from an array but also to set them. When performing array assignment,
you must be careful to make sure the array being assigned has the same size as the array
to which it is being assigned. For instance, consider the following command:

>> d([1 3],[2 4]) = [9 8; 7 6]

Note that both of the matrixes on the left and right of the equal sign are 2 × 2, so the
assignment is valid. Look at the results of this command and make sure you understand
what it does and why.

6.6 Conditional statements and the “find” command

One last command that is extremely useful in context of indexing in Matlab is find. find
will return a vector containing the indices of any nonzero elements in an array. Note that
find uses the single-index indexing scheme that was mentioned earlier. At first glance, this
has relatively few uses; however, it is in fact extremely useful because of the behavior of
conditional statements in Matlab (i.e., >, <, and ==). The command a > 5 will return an
array with the same size as a, but with each element either 1 or 0 depending on whether
or not it is greater than 5. Using find on this array will provide the indices of elements
greater than 5. One particularly good use of the find command is the following contexts.
Suppose you wish to set all negative elements in a matrix to zero. You can do this with a
single command like so:

>> m = [-1 5 10; 3 -8 2; -4 -9 -1];
>> m(find(m < 0)) = 0;

8 The University of Michigan, All rights reserved

EECS 206 January 7, 2002, Release v2.0 Matlab Tutorial

Alternately, if you wish to square every element that is greater or equal to 4, you can use
the find command twice in a single line, like this:

>> m(find(m >= 4)) = m(find(m >= 4)).^2;

7 Data Visualization

7.1 Using “plot”

So now we know how to build arbitrarily large arrays, populate them with interesting things,
and get individual elements or sections of them. However, pouring over pages and pages of
numbers is generally not much fun. Instead, we would really like to be able to visualize our
data somehow. Of course, Matlab provides many options for this. Let’s start by building
a vector we can use throughout this section, and then looking at it. Execute the following
commands:

>> x = sin(2*pi*(1:200)/25);
>> plot(x);
>> zoom on;

The first command builds up a sine wave, and the second command plots it. A window
should have popped up with a sine wave in it. Notice the y-axis extents from -1 to 1 as we
would expect. Using this form of plot, the x-axis is labeled with the index number; that is,
our vector has 200 elements, and so the data is plotted from 1 to 200. The third command
turned on Matlab’s zooming capabilities. If you left-click on the figure, it will zoom in;
right-clicking4 will zoom out. You can also left-click and drag to produce a zoom box that
lets you control what where the figure zooms. Experiment with this zoom tool until you’re
comfortable with it. Depending on the version of Matlab that you are using, there may
also be an icon of a magnifying glass with a + in it above the figure; clicking this icon will
also enable and disable zoom mode.

7.2 Interpolation; line and point styles

If you zoomed in closely enough on the plot, you probably noticed that the signal isn’t
perfectly smooth. Instead, it is made up of line segments. This is because our vector, x, is
made up of a finite collection of numbers. Matlab defaults to interpolating between these
points on the plot. You can tell Matlab to show you where the data points are, or to not
interpolate, by changing the line and point styles. Try each of these commands and look at
the results before executing the next one:

>> plot(x,'x-')
>> plot(x,'o')
>> plot(x,'rd:')

help plot lists the various combinations of characters that you can use to change line styles,
point styles, and colors.

7.3 Commands related to “plot”

There are a few similar commands for plotting vectors as well. Try these commands, and
make sure you zoom in on each one so you can see the results:

4For Mac users, I believe you double-click to zoom out all the way.

The University of Michigan, All rights reserved 9

Matlab Tutorial January 7, 2002, Release v2.0 EECS 206

>> stem(x)
>> stairs(x)
>> bar(x)

In this course, you will most often be using the plot and stem commands. Each is useful
in a somewhat different context.

7.4 Plotting with an x-axis

When you checked the help for plot (you did look at the help, didn’t you?), most likely
you noticed that there are some more explicit ways to use the function. There is an optional
first parameter that gives the x-position of each data point. Thus, we use plot for x-y scatter
plots and other things. Calling plot without the first parameter is equivalent to the following
command:

>> plot(1:length(x),x,'x-');

Sometimes, we’ll have a time axis that we want to plot against. For instance,

>> t = 0:.01:1.99;
>> plot(t,x);

This scales the time axis to match t. We will find this very useful when working with
sampled signals.

7.5 Plotting multiple vectors on the same figure

It possible (and often desirable) to plot multiple vectors simultaneously. One way (which
is probably the easiest to remember) requires a set of parameters for each vector. Execute
the following commands:

>> y = .8*sin(2*pi*(1:200)/14 + 0.5);
>> plot(t,x,'go-',t,y,'rx--');

This plots x and y versus t on the same figure with different line types. Note that the line
style arguments are optional; without them, Matlab will plot each curve using a different
color.

The hold command provides another method of plotting several curves on the same
figure. When we type hold on, an old figure will not be erased before a new one is plotted.
To add a curve to the plot we produced above, use the commands:

>> hold on;
>> plot(t,.3*x,'ks:');
>> hold off;

A third way to plot multiple lines simultaneously makes use of the fact that plot will
plot the columns of a matrix as separate lines. Execute the following commands.

>> plot([x; y]');

7.6 Putting several axes on one figure

Often we’ll want to plot two vectors next to one another but not on the same set of axes.
To do this, we use the subplot command. subplot takes three parameters: the number
of rows, the number of columns, and the figure number. Thus, the following command the
fourth subplot in an array of subplots with three rows and two columns.

10 The University of Michigan, All rights reserved

EECS 206 January 7, 2002, Release v2.0 Matlab Tutorial

>> subplot(3,2,4);

(Notice that it opens the fourth counting across the rows, as you would read a page. This
is notably different from single number indexing of Matlab arrays.)

Now, to put several plots in subplots like this, we simply execute several subplot com-
mands like this:

>> subplot(2,1,1);
>> plot(1:10, (1:10).^2);
>> subplot(2,1,2);
>> plot(1:10, (1:10).^3);

7.7 Two-dimensional arrays

You’re probably not surprised by now that Matlab also has facilities for visualizing two
dimensional arrays. Let’s look at some of them. First, we need an interesting matrix to
look at. Execute the following command:

>> z = membrane(1,50);

We now have a 101x101 matrix of numbers. The most straightforward way to look at this
data is using the imagesc command, which displays the matrix as though it were an image.
Execute the following commands:

>> imagesc(z); axis xy; colorbar;

Our surface has been displayed in color. Notice the colorbar along the right side of the image,
which tells what values the various colors map to. This type of display, where different colors
are used to represent differing values, is known as a pseudocolor display. If we look at the
image we’ve got a “high” spot in the lower right that tapers off to “low” regions around
the outside. The surface also has an overall L-shape. Another way to visualize this uses the
contour command. Try this:

>> contour(z,20); colorbar;

This display, the contour plot, shows us lines of constant height. This is the way that
meteorologists usually display atmospheric pressure on weather maps.

We also have some more interesting options. Try each of the following commands sepa-
rately:

>> mesh(z); rotate3d on
>> surf(z); rotate3d on

Now we have some “3-D” visualizations of our surface. If you click-and-drag the plot,
you should be able to rotate the surface so that you can see it from various directions.
Experiment with this until you’re comfortable with how it works. Notice what happens if
you look at the surface from directly above.

Matlab has some very powerful tools for data visualization; here, you’ve seen only a
small sampling. There many more. If you’re interested in exploring this topic further, check
help graph2d, help graph3d, and help specgraph.

The University of Michigan, All rights reserved 11

Matlab Tutorial January 7, 2002, Release v2.0 EECS 206

8 Programming in Matlab

Programming in Matlab is really just like using the environment at the command line.
The only difference is that commands are placed in a file (called an M-file) so that they
can be executed by simply calling the file’s name. We’ll also see that Matlab has many
of the same control flow structures, like loops and conditionals, as other, more traditional
programming languages.

8.1 Paths and working directories

Before we jump into programming in Matlab I need to make a few comments about files in
Matlab. Matlab has access to machine’s file system in roughly the same way a command
line based operating system like DOS or UNIX. It has a “present working directory” (which
you can see with the command pwd); any files in the present working directory can be seen
by Matlab. You can change the present working directory in in roughly the same way that
you do in DOS or UNIX, using the cd command (for “change directory”). Matlab also
has a “path,” like the path in DOS or UNIX, which lists other directories that contain files
that Matlab can see. The path command will list the directories in the path. We’ll be
making a few files in this tutorial, and you’ll need to store commands in files when doing
the laboratories. You’ll probably want to make a directory somewhere in your personal
workspace, cd to that directory, and store your files there. Unless you’re working on your
own system, do not store them in the main Matlab directory; if you do, the system’s
administrator will probably become very irritated with you.

8.2 Types of command files in Matlab

There are two types of files containing commands that Matlab can call. Both use the “.m”
file extension. The first type is a script, which contains nothing but a list of commands.
When you call the script (by simply typing in the script’s filename), Matlab will execute
all of the commands in the file and return to the command line exactly as if you had typed
the commands in by hand. Let’s write a short script.

8.3 Editors

First, we need an editor. If you’re using a Windows or Macintosh system, or MATLAB 6
on a UNIX, just type in edit at the Matlab prompt and a text editor will pop up. Older
versions of Matlab under UNIX do not have a built-in editor, so you’ll need to use some
other editor, like emacs or vi. Use the system to open a new terminal and open your favorite
text editor5.

8.4 Matlab scripts

Place the following lines in the text file and save it as “hello.m”.

% hello.m -- Introductory 'Hello World' script
% These lines are comments, because they start with '%'
hw = 'Hello World!'; disp(hw);

Now execute it by typing hello at the Matlab prompt. (Remember that the file needs to
be in your present working directory or on the path for Matlab to see it – cd to the correct
directory if necessary). As a result of executing the script, you should now have a variable
’hw’ in your workspace (remember, who lists variables in your workspace).

5pico or nano are UNIX text editors that are easy to use if you don’t already have a favorite.

12 The University of Michigan, All rights reserved

EECS 206 January 7, 2002, Release v2.0 Matlab Tutorial

8.5 Matlab functions

The second type of file that we can put commands in is called a function. A function
communicates with the current workspace by passing parameters. It also creates a separate
workspace so that it’s variables don’t get mixed up with whatever variables you have in
your current workspace. Using your text editor, make a new file that contains the following
lines and save it as “hello2.m.”

% hello2.m -- Introductory 'Hello World' function
% Try typing 'help hello2' when you're done, and see what happens
%
% function output = hello2(input)

function output = hello2(input)
% The line above tells MATLAB that this is a function
% with one input and one output parameter

hw2 = ['Hello World! x' num2str(input)];
disp(hw2);
output = hw2;

To call this function, type hello2(2). Note that once you’ve done this, the variable hw2
does not show up in your workspace. However, the data that was stored in output (the
output parameter) has been placed in ans. This is exactly what happens if you called a
Matlab built-in function without supplying an output parameter. Similarly, the ‘2’ is an
input parameter which is passed into the function. When a function is executed, it will
not have any variables defined except those defined inside the function itself and the input
parameters. For further help on these two types of M-file, type help function or help
script at the Matlab prompt.

8.6 Control Structures

In Matlab we also have a number of programming constructs at our disposal. While
primarily used in M-files, these constructs can also be used at the command line. However,
anything complicated enough to need a loop or an if-statement is usually worth putting into
an M-file. Let’s look at the most typical types of programming constructs.

8.6.1 Loops

The for loop is used to execute a set of commands a certain number of times, while also
providing an index variable. Consider the simple loop here:

for index = 1:10
disp(index);

end

This loop executes the disp command ten times. The first time it is executed, index is set
to 1. Thereafter, it is incremented by one each time the commands in the loop are executed.
Note that the colon form of the for loop is not mandatory; any row-vector can be used in
its place, and the index (which, of course, can be renamed) will be sequentially set to each
of the elements in the vector from left to right. We can use while loops in a similar manner.
Consider this:

The University of Michigan, All rights reserved 13

Matlab Tutorial January 7, 2002, Release v2.0 EECS 206

ct = 10;
while ct > 0.5
ct = ct/2;
disp(ct);

end

As long as the conditional after while is true, the loop will be executed.

8.6.2 Conditional statements

A more traditional method of conditional execution comes from the if-else statement.
Consider this:

if pi > 4
disp('Pi is too big!');

elseif pi < 3
disp('Pi is too small!');

else
disp('Pi is just about right.');

end

Here, Matlab will first check the conditional, pi > 4. If this is true, the first display
command will be executed and then the remainder of the if-else statement will be skipped
(that is, none of the other conditionals will be tested). If the first conditional is false,
Matlab will begin to check the remaining conditionals. There can be any number of
elseif statements in this construct (including none), and the else statement is entirely
optional. If you have a large number of chained conditionals, you might consider using the
switch-case construct (type help switch or help case).

8.7 Strings and string output

In hello2 above, we constructed a string and displayed it. Though not so useful at the
command line, in programming we often want do work with strings and display them. In
Matlab, strings are delimited by the single-tick '. Thus, 'STRING' is treated as a literal
string. Strings, though, are just row-vectors of characters. This means that we can build
strings using the same vector concatenation operators that we presented earlier. Thus, the
following command:

>> ['string' 'test']

outputs the string 'stringtest'.
Rather than echoing strings (or numbers, for that matter) by omitting the semicolon,

we can also use the disp command. Notice the difference when we call this command:

>> disp(['string' 'test']);

Also, for any C programmers in the audience, note that you can perform formatted string
output with fprintf and sprintf.

It is often useful to convert numbers to strings. We can use the num2str command to
do this. Consider this:

>> for counter = 1:10
>> disp(['Percent completed: ' num2str(10*counter) '%']);
>> end

In this way, we can produce formatted output without using fprintf or sprintf.

14 The University of Michigan, All rights reserved

EECS 206 January 7, 2002, Release v2.0 Matlab Tutorial

9 Debugging your Matlab code

Inevitably, when you put Matlab commands into a file as a script or a function, you will
make mistakes and need to locate them. Because of its interpreted environment, Matlab
is actually one of the most pleasant languages to debug. And, as is always the case when
debugging code, there are many ways to accomplish this.

If you are executing a script or function and Matlab encounters an error, it will im-
mediately print the line number of the function on which the error occurred. If the error
occurs in a file other than the calling file, a call stack will be printed. This listing shows
which file called which other files and on what line number. This allows us to pinpoint the
source of the error quickly.

One of the simplest ways to debug is a method you are probably familiar with from
other programming languages. We can force Matlab to print strings or variables using the
disp command. This way, we can display for loop counters or other relevant variables to
determine what they contain and exactly when in the program flow the code “breaks.”

The real power of Matlab debugging comes from our ability to ”break” at any point in
the code and then proceed to execute any Matlab commands. There are a number of ways
to do this. For instance, you can tell Matlab to stop and enter “debug mode” whenever
an error is encountered. When you’re in debug mode, the command line changes to K>>.
You will then have access to all of the variables that are in scope at the time. Turn on this
option with the command

>> dbstop if error

To turn it off again, use the command

>> dbclear if error

We can also set and clear breakpoints elsewhere in the code using the same commands. To
set (and then clear) a breakpoint in hello2.m at line 11, call

>> dbstop in hello2 at 11
>> dbclear in hello2 at 11

dbstatus will show all breakpoints that are currently active. Note that if you try to set a
breakpoint at a non-command line (like a comment), the breakpoint will be set at the next
valid command.

Another useful command is dbstep, which advances one command in the m-file. If you
call dbstep in or dbstep out, you can step into and out of called functions (that is, you
traverse up and down the call stack, which contains a list of which functions have been
called to reach the current point in the code). dbstack lists the current call stack including
your current file and the line number in this file. dbtype types all or parts of an m-file.
Eventually, you’ll want to get out of debug mode, so you can call dbquit to halt execution
of the file or dbcont to continue execution until the end of the file or the next breakpoint. In
general, help debug is the starting point in the help system for learning about the Matlab
command line debugger.

If you are running Matlab on a Windows system (or possibly a Macintosh), the de-
bugger is also available through the built in editor. The exact implementation depends on
your system and the version of Matlab, but usually breakpoints will show up as red circles
next to commands. In debug mode, the current command will be pointed to with an arrow,
so you can follow where you are in the code. There are typically shortcut keys and menu
items to insert and remove breakpoints, step through the code, and toggle flags such as
stop-if-error.

The University of Michigan, All rights reserved 15

Matlab Tutorial January 7, 2002, Release v2.0 EECS 206

If you save a file that has breakpoints, you may find that your breakpoints disappear.
This can be very annoying, so there is an alternative method of entering debug mode.
Placing the command keyboard into your code is effectively the same as placing a breakpoint
in the code, such that you can execute commands before returning to program execution
(with the command return).

There are a number of error types that you are likely to encounter. One very good rule of
thumb says that if an error occurs inside a Matlab function, the error is almost assuredly
in the calling function. Usually this means that the function is being passed improper
parameters; check the call stack or dbstep out until you find the line in your program which
is causing problems. Other common errors include indexing errors (indexing with 0 or a
number greater than the length of the indexed dimension of a variables) and assignment
size mismatches. Matlab is usually pretty descriptive with its error messages once you
figure out how to interpret what it is saying. As is usually the case when debugging, an
error message at a particular line may in fact indicate an error that has occurred several
lines before.

16 The University of Michigan, All rights reserved

EECS 206 January 7, 2002, Release v2.0 Matlab Tutorial

List of Commonly Used Matlab Commands

Elementary Math Functions
abs atan exp log rem sqrt
acos ceil fix log10 round tan
angle conj floor mod sign
asin cos imag real sin

Graphing and Plotting Functions
axis figure line print stem xlabel
bar grid loglog semilogx subplot ylabel
clf hold plot semilogx text zoom
close legend polar shg title

Relational and Logical Functions
all eq (==) ge (>=) isempty isnan not (~)
and (&) exist gt (>) isfinite le (<=) or (|)
any find ischar isinf lt (<) strcmp

Programming and Control Flow
break disp end if pause try
case else error input return warning
catch elseif for otherwise switch while

General Purpose Functions
who length exit which exist
whos clear quit lookfor zeros
size why help helpdesk ones

File and Directory Functions
cd fclose load path save what
dir fopen mkdir rmdir type

Debugging Commands
dbclear dbquit dbstatus dbstop dbup
dbcont dbstack dbstep dbtype keyboard

The University of Michigan, All rights reserved 17

Matlab Tutorial January 7, 2002, Release v2.0 EECS 206

11 Things I Wish Somebody Had Told Me About Matlab

1. Matlab starts indexing it’s arrays from 1 rather than from 0.

2. Use the up-arrow to recall previous commands. If you type in a few characters and
then hit the up-arrow, Matlab will try to find a previous command that started with
those characters.

3. When indexing matrices, the indices are always given a(row,column). Similarly,
size(a) returns a two-element vector [num_rows, num_columns].

4. Semicolons at the end of a line are not necessary; they simply suppress output.

5. If I multiply (or divide, or exponentiate) two arrays without using the dot-operators,
I probably won’t get what I’m expecting (unless I want to do matrix multiplication).

6. Strings are delimited with the single tick mark: '.

7. We concatenate arrays (and strings) using square brackets:

>> [ones(3) zeros(3)])

8. When a function returns multiple parameters, we use square brackets to retrieve them:

>> [max_value, index] = max([4.3, 2.9, 8.6, 6.3, 1.0])

Otherwise, only one parameter is returned.

9. Most Matlab commands (like min, max, sum, prod, and a host of others) work on
matrices by operating down each column individually. Thus, after executing this
command:

>> [max_value, index] = max(eye(6))

max_value has a vector of six ones (since the maximum value in each column is 1)
and index is a vector containing the row number of the 1 in each column.

10. The end keyword is exceptionally useful when indexing into arrays of unknown size.
Thus, if I want to return all elements in a vector but the first and last one, I can use
the command:

>> x(2:end-1)

which is equivalent to the command:

>> x(2:length(x)-1)

11. Matlab automatically resizes arrays for you. Thus, if I want to add an element on
to the end of a vector, I can use the command:

>> x(end+1) = 5;

18 The University of Michigan, All rights reserved

