50

The University of Michigan, All rights reserved



Laboratory 3

Sinusoids and Sinusoidal Correlation

3.1 Introduction

Sinusoidsare important signals. Part of their importance comes from their prevalence in the everyday world, where
many signals can be easily described as a sinusoid or a sum of sinusoids. Another part of theirimportance comes from
their properties when passed through linear time-invariant systems. Any linear time-invariant system whose input is a
sinusoid will have an output that is a sinusoid of the same frequency, but possibly with different amplitude and phase.
Since a great many natural systems are linear and time-invariant, this means that sinusoids form a powerful tool for
analyzing systems.

Being able to identify the parameters of a sinusoid is a very important skill. From a plot of the sinusoid, any
student of signals and systems should be able to easily identify the amplitude, phase, and frequency of that sinusoid.

However, there are many practical situations where it is necessary to build a system that identifies the ampli-
tude, phase, and/or frequency of a sinusoid — not from a plot, but from the actual signal itself. For example, many
communication systems convey informationtopdulating i.e. perturbing, a sinusoidal signal calledarier. To
demodulatehe signal received at the antenna, i.e. to recover the information conveyed in the transmitted signal, the
receiver often needs to know the amplitude, phase, and frequency of the carrier. While the frequency of the sinusoidal
carrier is often specified in advance, the phase is usually not specified (it is just whatever phase happens to occur when
the transmitter is turned on), and the amplitude is not known because it depends on the attenuation that takes place
during transmission, which is usually not known in advance. Moreover, though the carrier frequency is specified in
advance, no transmitter can produce this frequency exactly. Thus, in practice the receiver must be able to “lock onto”
the actual frequency that it receives.

Doppler radar provides another example. With such a system, a transmitter transmits a sinusoidal waveform at
some frequency,. When this sinusoid reflects off a moving object, the frequency of the returned sinusoid is shifted
in proportion to the velocity of the object. A system that determines the frequency of the reflected sinusoid will also
be able to determine the speed of the moving object.

How can a system be designed that automatically determines the amplitude, frequency and phase of a sinusoid?
One could imagine any number of heuristic methods for doing so, each based on how you would visually extract
these parameters. It turns out, though, that there are more convenient methods for doing so — methods which involve
correlation. In this lab, we will examine how to automatically extract parameters from a sinusoid using correlation.
Along the way, we will discover how complex numbers can help us with this task. In particular, we will make use of
the complex exponential signahd see the mathematical benefits of using an “imaginary” signal that does not really
exist.
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Laboratory 3. Sinusoids and Sinusoidal Correlation

3.1.1 “The Question”

e How can we design a system that automatically determines the amplitude and phase of a sinusoid with a known
frequency?

e How can we design a system that automatically determines the frequency of a sinusoid?

3.2 Background

3.2.1 Complex numbers

Before we begin, let us quickly review the basics of complex numbers. Recall the a complex numhe#- jy is
defined by itgeal part, z, and itsimaginary part y, wherej = +/—1. Also recall that we can rewrite any complex
number intopolar form! or exponential formz = re’?, wherer = |z| is themagnitudeof the complex number and
6 = angl€z) is theangle We can convert between the two forms using the formulas

x = rcos(d) (3.1)
= rsin(f) 3.2

and

ro= zlty? (3.3)

tan~! (¥), z>0
0 = { tan~? E%; +m, <0 (3.4)

A common operation on complex numbers is¢lenplex conjugateérhe complex conjugate of a complex number,
z*, is given by

Y = z—jy (3.5)
= pre 19 (3.6)

Conjugation is particularly useful becausg = |z|%.
Euler's formula is a very important (and useful) relationship for complex numbers. This formula allows us to
relate the polar and rectangular forms of a complex number. Euler's formula is

e’ = cos() + jsin(0) (3.7)
Equally important are Euler’s inverse formulas:

70 —70

cos(f) = % (3.8)
0 _ o—i0

sin() = % (3.9)

It is strongly recommendethat you commit these three equations to memory; you will be using them regularly
throughout this course.

1Sometimes the polar form is written as= /6, which is a mathematically less useful form. This form, however, is useful for suggesting the
interpretation of- as a radius anél as an angle.
2Pronounced “oiler’s”.
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3.2.2 Sinusoidal and complex exponential signals in continuous time

3.2.2 Sinusoidal and complex exponential signals in continuous time
Recall that a continuous-time sinusoidstandard forms(t), is given by the formula
s(t) = Acos(wot + @), (3.10)

whereA > 0 is the sinusoid’'amplitude wy is the sinusoid’$requencygiven inradian frequencyradians per second),
ando¢ is the sinusoid’'phase It is also common to represent such a sinusoid in the following form

s(t) = Acos(27 fot + &), (3.11)

wheref, is the sinusoid’s frequency given in Hertz (Hz, or cycles per second). Noteghat2r f,. The frequency
of a sinusoid is generally restricted to be positive.

The notation for sinusoids also extends to a special signal known asthglex exponential sigrial Complex
exponential signals are very similar to sinusoids, and have the same three parameters. We define a continuous-time
complex exponential signal(t), in standard form as

c(t) = Aed(@ot+9) (3.12)

Itis generally useful to consider that sinusoids are composed of a sum of complex exponential signals by using Euler’s
inverse formulas. Thus, a sinusoid in standard form can be rewritten in several different ways:

s(t) = Acos(wot + @) (3.13)
_ g [ej(wot+¢) + e*j(wot+¢)] (3.14)
A
= E(C(t) +c*(t)) (3.15)
- Re{Aej(“°t+¢)} (3.16)

Using Euler’s formula, we can also interpret a complex exponential sigtlads the sum of a real cosine wave and
an imaginary sine wave:
c(t) = Acos(wot + @) + jAsin(wot + @) (3.17)

Sometimes it is useful to visualize a complex exponential signal as a “corkscrew” in three dimensions, as in Figure
3.1. Note that it is common to permit complex exponential signals to have either positive or negative frequency. The
sign of the frequency determines the “handedness” of the corkscrew.

3.2.3 Finding the amplitude and phase of a sinusoid with known frequency

We've suggested that we can us@relationto help us determine the amplitude and phase of a sinusoid with known
frequency. Suppose that we have a continuous-time sinusoithfthet sinusoidl

s(t) = Acos(wot + @) (3.18)

with known frequencyy, but unknown amplitudel and phase, which we would like to find. We can perform in-
place correlatiohbetween this sinusoid andeference sinusoid:(t), with the same frequency and known amplitude

3These are sometimes referred to simplgasiplex exponentials
4In-place correlation between two real, continuous-time signgls, andy(t) is defined ag’ (z,y) = f: z(t)y(t)dt. The length(b — a) is
thecorrelation length
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Imaginary

Time

Figure 3.1: Three-dimensional plot of a complex exponential signal.

and phase. Without loss of generality,4ét) haveA = 1 and¢ = 0. Ther?,

C(s,u) = /tt2 A cos(wot + ¢) cos(wot)dt (3.19)
to
= g cos(¢) + cos(2wot + ¢)dt (3.20)
t1
_ 4 AR SN 3.21
= 3 [cos(¢) + Q—LUOSIH( wot + @) . (3.21)

Since we know the frequenayy, we can easily set the limits of integration to include an integer number of funda-
mental periods of our sinusoids. In this case, the second term evaluates to zero and the correlation reduces to

C(s,u) = gcos&b)(tg —t1) (3.22)

This formulais a useful first step. If we happen to know the plkiasieen we can readily calculate the amplitudlef
s(t) from C(s,w). Similarly, if we know the amplitudel, we can narrow the phagedown to one of two values. If
both amplitude and phase are unknown, though, we cannot uniquely determine them.
If the interval over which we correlate is not a multiple of the fundamental periadtf then the second term in
equation (3.21) may be nonzero. However, if as commonly hapggissmuch greater than one, then the second term
will be so small that it can be ignored, and equation (3.22) holds with approximate equality.
To resolve the ambiguity when both amplitude and phase are unknown, one common approach to correlate with a
second reference sinusoid thafisut of phase with the first. Here, though, we will explore a different method which
is somewhat more enlightening. Notice what happens if we use a complex exponential,

c(t) = efwot (3.23)

SRecall thatcos(A) cos(B) = % cos(A — B) + % cos(A + B).
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3.2.3 Finding the amplitude and phase of a sinusoid with known frequency

as our reference sigrfal

ta
C(s,c) = / s(t)e* (t) dt (3.24)
t
; |
= A cos(wot + @)eI¥0t dt (3.25)
t1
t
— / ’ g {ej(wot+¢) + e—j(wot+¢)} e—iwot 1t (3.26)
t1
A [t .
= 3 / eIt 4 e~ (w0t td) gy (3.27)
t1
AT . -1 . t2
_ A [emH _ e—y<2wot+¢>} (3.28)
0
2 2jw t

If we again assume that we are correlating over an integer number of periods of our target sinusoid, then the second
term goes to zero and we are left with

C(s,c) = gejd’(m —t1). (3.29)

Our correlation has resulted in a simple complex number whose magnitude is directly proportional to the amplitude of
the original sinusoid and whose angle is identically equal to its phase! We can easily turn the above formula inside-out
to obtain

2

A = P— |C (s, )] (3.30)
¢

angl€C(s, c)) (3.31)
We can also see from equation (3.29) that in correlating with a complex exponential signal, we have effectively
calculated the phasbrepresentation of our sinusoid.
As with the case of correlating with a sinusoid, we note that when the interval over which we correlate is not
a multiple of the fundamental period oft), then the second term in equation (3.28) is not zero. However, if as
commonly happens, is much greater than 1, then the second term will again be small enough that it can be ignored,
and equations (3.29), (3.30), and (3.31) hold with approximate equality.

The Amplitude and Phase Calculator

In this lab we will implement a system that estimates the amplitude and phase of a sinusoid with a known frequency.
Since we will do this using a computer andAVML.AB , we must necessarily work with sampled version of the signals
s(t) andc(t). Specifically, ifTs denotes the sampling period, then we work with the discrete-time signals

sln] = s(nTs) = Acos(woTsn + @) (3.32)
cn] = c(nTy) = e/oten (3.33)
As shown below, whefT; is small, the correlation betweesft) andc(t) can be approximately computed from the

correlation betweeg[n] andc[n|. Let{n1, ..., n2} denote the discrete-time interval corresponding to the continuous-
time interval[ty, t2], and letN = ns — ny + 1 denote the number of samples taken in the intepyaks], so that

SNotice that we conjugate our complex exponential here. This is because correlation betweempl@signals is defined af z(t)y* (t)dt.
"When we represent a sinusoid with amplitull@nd phase as the complex numbete’? to simplify the calculation of a sum of two or more
sinusoids, this complex number is known gshesot
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Signal vect .

gnatvector Amplitude and | —— Amplitude
Support vector Phase Calculator

Frequency — (APC) Phase

Figure 3.2: System diagram for the “amplitude and phase calculator.”

ty —t1 =~ NT,. Then,

C(s,c) = /t2 s(t) c*(t) dt (3.34)
n2 (n+1)Ts

= n; /n . s(t) ¢* () di (3.35)
n2 (n+1)Ts

~ s) " (nTs)d 3.36

H;I /nTS s(nTs) ¢*(nTs) dt ( )

= i s(nTs) c*(nTs) Ts (3.37)

= i s[n] c*[n] Ts (3.38)

= C;(s, c)Ts (3.39)

where the approximation leading to the third relation is valid bec&ygesmall, and consequently the signa(s) and

¢(t) change little over each; second sampling interval, and where we G5€s, c) to denote the correlation between

the discrete-time signalgn] andc[n], to distinguish it from the correlation between continuous time sigs(@jsand

c¢(t). We see from this derivation that the continuous-time correlation is approximately the discrete-time correlation
multiplied by the sampling interval, i.e.

C(s,c) = Cq(s,c)Ts (3.40)

We will use this value of correlation in equations (3.30) and (3.31) to estimate the amplitude and phase of a continuous-
time sinusoid.

In the laboratory assignment, we will be implementing an “amplitude and phase calculator” (APC)s agVi
function. A diagram of this system is shown in Figure 3.2. The system takes three input parameters. The first is the
signal vectorwhich contains the sinusoid itself. The second ishpport vectorfor the sinusoid. The third input
parameter is the frequency of the reference sinusoid in radians per second. Note that for the system’s output to be
exact, the input sinusoid must be defined over exactly an integer number of fundamental periods.

The system outputs the sinusoid’s amplitude and its phase in radians. The system calculates these outputs by
first computing the in-place correlation given by equations (3.37) or (3.38). Then, this correlation value is used with
equations (3.30) and (3.31) to compute the amplitude and phase. Note that in equation (3.30), we need to replace
to — ta With N = ny — ny + 1 when implementing in discrete time.
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3.2.4 Determining the frequency of a target sinusoid

3.2.4 Determining the frequency of a target sinusoid

Suppose now that we are given the task of making a system that automatically determines the frequency of a target
sinusoid. It turns out that correlation can help us with this problem as well. Consider the following case. Let the target
sinusoid be defined by(t) = A cos(wst + ¢), wherew,, A, and¢ are all unknown. We correlatdt) with a complex
exponential signak(t) = e/*<t, with frequencyw,, wherew; # w,:

ta
Cls,c) — / s(t)e (1) dt (3.41)
t1
to .
= / Acos(wst—F(b)e*J(‘““t)dt (3.42)
t1
t
_ / A |:ej(wst+¢) +efj<wst+¢>} e—i(@et) gt (3.43)
t1 2
A [t -
_ = e][(ws—wc)t+¢] + e‘][(ws'i‘“%)t""d)] dt (344)
t1
t
_ é [ 1 eil(ws—we)t+e] | 1 ej[(wswu)tw]} ’ (3.45)
2 Ws — We Wg + We t1

Here, let us make a simplifying assumption and assume(that- w.) is sufficiently large that we can neglect the
second term. Then, we have
A

Cls,c) ~ m[ej[ws—wc)tms]_e—j[ws—wc)tlw]} (3.46)

The resulting equation depends primarily on the frequency differénce- w.) between the target sinusoid and our
reference signal. Though itis notimmediately apparent, the value of this correlation converges to the value of equation
(3.29) as théw, — w.) approaches zero.
Consider now the length-normalized correlati6iis, c), defined as
~ C(s,c)

C(s,c) = P (3.47)

One can see from equation (3.29) that when the reference and target signals have the same frequency, the length-
normalized correlation does not depend on the length of the signal. However, when the signals have different frequen-
cies, one can see from equations (3.46) and (3.47) that the magnitude of the length-normalized correlation becomes
smaller as we correlate over a longer period of time. (This happens more slowly as the frequency difference becomes
smaller.) In the limit as the correlation length goes to infinitye length-normalized correlation goes to zero unless

the frequencies match exactljhis is a very important theoretical result in signals and systems.

Another special case occurs when we correlate ovaramon periof the target and reference signals. This
occurs when our correlation interval includes an integer number of perioldstbthe target signal and reference
signal. In this case, the correlation in equation (3.46), for signals of different frequencies, is identically @éro
course, the correlation isot zero when the frequencies match. Note that this is the same condition required for
equation (3.29) to be exact.

How does all of this help us to determine the frequency of the target sinusoid? The answer is perhaps less elegant
than one might hope; basically, we “guess and check”. If we have no prior knowledge about possible frequencies
for the sinusoid, we need to check the correlation with complex exponentials having a variety of frequencies. Then,
whichever complex exponential yields the highest correlation, we take the frequency of that complex exponential as
our estimate of the frequency of the target signal. In the next section, we will formalize this algorithm.
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A frequency estimation algorithm

Suppose that we have a continuous-time target sinugojdvith support[0, T'] with unknown amplitude, frequency,
and phase. To estimate these parameters, we'll calculate the length-normalized correlation between this signal and
reference complex exponentials with various frequencies over the sighakzond length. Then, we look for the
frequency that produces the largest correlation.

We choose the frequencies of these complex exponentials to be multjfffeso that the correlation is over an
integer number of periods of each complex exponential. That is, the frequencies Wjllhe/T,.... As in the
previous subsection, we’'ll need to approximately compute the correlation from samplgs$ ahd each reference
exponential, taken with some small sampling inteffal For convenience we’ll také& samples and choosg =
T /N for some large even integ@f. With samples taken at intervals 6f seconds, we cannot hope to do a good job
of correlating with complex exponentials with very high frequency. The rule of thumb that you will learn in Chapter 4
is that, at the very least, two samples are needed from each period of the signal being sampled. Therefore, the highest
frequency with which we will correlate is, approximately,(27). Specifically, we will correlate(t) with complex
exponentials at frequencies

LN R .49
Then, fork = 1,2,..., N/2, the length normalized correlation eft) with the complex exponential at frequenéy
is (using equations (3.37), (3.38) and (3.47))
1 N-1 -
X[ ~ & n; s(nTy) e 9271l (3.49)
1 N-1 o
=~ s[n] e~ 72" (3.50)

Il
o

n

where we have used the fact tay/T = 1/N and where we have denoted the resi]k] because this is the notation
used in future labs for the last formula above. Thus, the output output of these correlations is th¥ &ehombers
X[1],...,X[N/2]. Remember thaX [k] will generally be complex. To estimate the frequency of the target sinusoid,
we simply identify the value of for which | X [k]| is largest. Withk,,,... denoting this value, our estimated frequency,
West, IS

kmaa: _ kmam
West = 2T T = 2 NT. (3.51)
Now that we have estimated the frequency, we should also be able to estimate the amplitude and phase as well. In
fact, we have almost calculated these estimates already. From equations (3.30) and (3.31), they are:

Aest = 2|X[kmax]| (352)
¢est = angqu[kmaa:]) (353)

There is one potential problem here, however. Previously, we assumed the frequency was known exactly when deter-
mining the amplitude and phase; now, we only know the frequency approximately. In the laboratory assignment, we
will see the effect of this approximation.

In the laboratory assignment, we will be developing a system that can automatically estimate the amplitude, phase,
and frequency of a sinusoid. A block diagram of the “frequency, amplitude, and phase estimator” (FAPE) system
is given in Figure 3.3. Unlike the APC, this system takes only two input parameters: a signal vector and the corre-
sponding support vector. The system has four output parameters. The first three are the estimates of the frequency,
amplitude, and phase of the input sinusoid. The fourth is the vector of correl&fiahs . ., X [N/2] produced by the
correlations. It is often useful to examine this vector to get a sense of what the system is doing.
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3.3 Some M\TLAB commands for this lab

Signal vector Frequency, [ Frequency
Amplitude, and —— Amplitude
Support vector—| Phase Estimator——  Phase
(FAPE) ______ Vector of
Correlations

Figure 3.3: System diagram for the “frequency, amplitude, and phase estimator.”

Estimating doppler shift

When a sinusoidal transmitted signal reflects off an object moving towards the transmitter abgptedsignal
returned to the transmitter is again a sinusoid, but with the higher frequency

v

Wr = Wt *

(3.54)

V— Vo

wherew; is the original frequency of the transmitted signal anid the speed of propagation in the given medium.

This is called theDoppler shiftphenomenon. If one measures, e.g. with FAPE, then one can use equation (3.54)

to compute the speed of the objegt assuming of course, that andv are known. Indeed, this is how radar systems

are able to measure the speed of automobiles, airplanes, baseballs, wind, etc. In the lab assignment you will be asked
to estimate the velocity of an underwater object from a reflection of a sonar signal.

3.3 SomeMATLAB commands for this lab

e Constructing complex numbers: MATLAB represents all complex numbers in rectangular form. To enter
a complex number, simply type + 6% (for instance). Note that both andj are used to represegf—1
(unless you have used one or the other as some other variable). To enter a complex nhumber in polar form, type
2*exp(j*pi/3) (for instance).
You may be wondering how krLAB actually works with complex numbers, given that complex numbers are,
in general, the sum of a real number and an imaginary one. The fact is that the imaginary component of a
complex number is in fact eeal number which MATLAB stores in the usual way. It thinks of a complex
number as a pair of floating point numbers, one to be interpreted as the real part and the other to be interpreted
as the imaginary part. And it knows the rules of arithmetic to apply to such pairs of numbers in order to do what
complex arithmetic is supposed to do.

e Extracting parts of complex numbers: If z contains a complex number (or an array of complex numbers),
you can find the real and imaginary parts using the commiaad) andimag(z) , respectively. You can
obtain the magnitude and angle of a complex number (or an array of complex numbers) using the commands
abs(z) andangle(z) ,respectively.

e Complex conjugation: To compute the complex conjugate of a value (or ar@my3imply use the MTLAB
commandonj(z)

¢ Finding the index of the maximum value in a vector: Sometimes we don’t just want to find the maximum
value in a vector; instead, we need to know where that maximum value is locatedhakemmand will do
this for us. Ifv is a vector and you use the command

>> [max_value, index] = max(v);
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3.4

3.5

60

the variablanax_value will contain largest value in the vector, amtiex contains position ofnax_value
inv.

MATLAB commands to help you visually determine the amplitude, frequency, and phase of a sinusoid:
Sometimes you may need to determine the frequency, phase, and amplitude of a sinusoid framaa M

plot. In these cases, there three commands that are quite useful. First, the cogridand provides in-

cludes a reference grid on the plot; this makes it easier to see where the sinusoid crosses zero (for instance).
The zoom command is also useful, since you can drag a zoom box to zoom in on any part of the sinusoid.
Finally, you can useaxis in conjunction withzoom to find the period of the signal. To do so, simply

zoom in on exactly one period of the signal and tgpés . MATLAB will return the current axis limits as

[Xx_min, x_max, y_min, y_max]

Calling apc: The functionapc , which you will be writing in this laboratory, estimates amplitude and phase
of a continous-time target sinusoid from its samples. The input parameters are a (sampled) targetssinusoid
the sinusoid’s support vector, and the continuous-time frequeneg in radians per second/e callapc like

this:

>> [A,phi] = apc(s,t,w0);

Note that a compiled version of this function, calkggt_demo.dll , is also available.

Calling fape : The functionfape , which you will be writing in this laboratory, implements the frequency,
amplitude, and phase estimator system. This function accepts the samples of a target continuous-time sinusoid
s and it's support vectar, like this:

>> [frg,A,phi,X] = apc(s,t);

wherefrq is the estimated frequency in radians per secérid the estimated amplitudphi is the estimated
phase, aniis the vector of correlations( [1], . .., X [N/2] betweers and each reference complex exponential.
Note that a compiled version of this function calléabe_demo.dll | is also available.

Demonstrations in the Lab Section

Complex Numbers in MTLAB

Sinusoids and complex exponentials imMAB
Sinusoidal correlation: matching frequencies
Sinusoidal correlation: different frequencies

FAPE: the Frequency, Amplitude, and Phase Estimator

Laboratory Assignment

(Understanding sinusoids) Execute the following commands:

>> t = linspace(-0.5, 2, 1000);
>> plot(t,cos(linspace(-7.5,27,1000)),'k:";

The University of Michigan, All rights reserved



3.5 Laboratory Assignment

(a) (Extracting sinusoid parameters) Visually identify the amplitude, continuous-time frequency, and phase of
the continuous-time (sampled) sinusoid that you've just plotted.
e [4] Include your estimated values in your report. Reduce your answers to decimal form.
e [3] What is the phasor that corresponds to this sinusoid? Write it in both rectangular and polar form.
(Again, keep your answers in decimal form. You should uggMB to perform these calculations.)

(b) (Checking your parameters) Verify your answers in the previous problem by generating a sinusoid using
those parameters and plotting them on the above graph bsidgon . Uset as your time axis/support
vector. The new plot should be close to the original, but it does not need to be exactly correct.

e [3] Include the resulting graph in your report. Remember to incluidgeand .

2. (The Amplitude and Phase Calculator) In this problem we will complete and test a function which implements
the “Amplitude and Phase Calculator”, as described in Section 3.2.3. Download tlapdilm . This is a

“skeleton” M-file for the “amplitude and phase calculator”. Also, generate the following sinusoidst )
with its support vectort( test ):

>> t_test = 0:0.01:.99;
>> s test = 1.3*cos(t_test*10*pi + 2.8);

(a) (Identify sinusoid parameters by hand) What are the amplitude, frequency in radians per second, and phase
ofs test ?

e [2] Include your answers in your lab report.

(b) (Write the APC) Complete the functi@pc . You should use the signal test to test the operation of

your function. You may also wish to use the compiled functipe_demo.dll  to test your results on
other sinusoids.

e [10] Include the code foapc in your MATLAB appendix.

(c) (Test APC on a sinusoid with unknown parameters)

Download the fildab3_data.mat . This.mat file contains the support vectdr éamp ) and signal

vector §_samp) for a sampled continuous-time sinusoid with a continuous-time frequengy f2007
radians.

e [4] Fromt_samp , determine the sampling periad,, of this signal.
e [3] Useapc ? to determine the amplitude and phase of the sinusoid exactly.

(d) (APC in a non-ideal case) What happens if weayse to correlate over a non-integral number of periods
of our target sinusoid? We will investigate this question in this problem and the next. First, let's examine
a single non-integral number of periods. Generate the following sinusoid:
>> apc_support = 0:0.1:8;
>> apc_test = cos(apc_support*2*pi/3);

This is a sinusoid with a frequency of = %’T radians per second, unit amplitude, and zero phase shift.
e [2] Plotapc_test and include the plotin your report.
e [2] What is the fundamental period apc_test ?
e [2] Approximately how many periods are includedapc_test ?

e [2] Useapc to estimate the amplitude and phase of this sinusoid. What are the amplitude and phase
errors for this signal?

91f you failed to correctly completapc.m , you may usepc _demo.dll  for the following problems. If you use the demo function, please
indicate this in your lab report.
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(e) (APC in many non-ideal cases) Now we wish to examine a large number of different lengths of this
sinusoid. You will do this by writing #r loop that repeats the previous part for many different values of
the length of the incoming sinusoid. Specifically, writt®a loop with loop countesupport_length
ranging over values df:0.1:50 seconds. In each iteration of the loop, you should

i. Setapc_support equal to0:0.1:(support_length-0.1) ,
ii. Recalculateapc_test using the nevapc_support
iii. Useapc to estimate the amplitude and phasap€_test , and
iv. Store these estimates in two separate vectors.

Put your code in an M-file script so that you can run it easily.

e [8] Include your code in the MTLAB appendix.

e [4] Usesubplot to plot the amplitude and phase estimates as a function of support length in two
subplots of the same figure. You should be able to see both local oscillation of the estimates and a
global decrease in error with increased support length.

¢ [3] At what support lengths are the amplitude estimates correct (i.e., equal to 1)?
e [3] What minimum support length do we need to be sure that the phase error is less than 0.01 radians?

3. (The Frequency, Amplitude, and Phase Estimator) In this problem, we'll explore the frequency, amplitude and
phase estimator, as described in Section 3.2.4. Download tHagi#em . This is a “skeleton” M-file for the
“frequency, amplitude, and phase estimator” system.

(a) (Write the FAPE) Complete tHape function. You can use test ands_test from Problem 2 along
with the compiledape_demo.dll  to check your function’s results.

e [16] Include the completed code in your report'ssM AB appendix.

¢ [3] What are the frequency (in radians per second), amplitude, and phase estimates retfaped by
fort test ands_test ? Arethese estimates correct?

e [3] Usestem andabs to plot the magnitude of the vector of correlations returneddme versus
the associated frequencies.

e [3] What do you notice about this plot? What can you deduce from this fact? (Hint: Consider what
this plot tells you about the returned estimates.)

(b) (Running FAPE on in a non-ideal case) In this problem, we’ll see what happens to FAPE when the tar-
get sinusoid does not include an integral number of peridals3_data.mat  contains the variables
fape_test t (a support vector) anfhpe_test s (its associated sinusoidal signal). Riape on
this signal.

e [3] What are the frequency in radians per second, amplitude, and phase estimates that are returned?

e [3] Usestem andabs to plot the magnitude of the returned vector of correlations.

e [4] Plotfape_test s  and a new sinusoid that you generate from the parameter estimates returned
by FAPE on the same figure (usitngld on ). Usefape test t as the support vector for the
new sinusoid. Make sure you use different line types and include a legend.

e [3] What can you say about the accuracy of estimates returned by FAPE?

e [3] Compare the plot of the correlations generated in this problem and in Problem 3a. What do these
different plots tell you?

Food for thought: Investigate the error characteristicsfgbe as you did withapc in problem 2e. Do the
frequency, amplitude, and phase estimates improve as we use longer support lengths? Which parameter is
exhibits the most error? What does the vector of correlatidf], tell you about these estimates?
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3.5 Laboratory Assignment

(c) Measuring speed via Doppler shift. A sonar transmitter in the ocean emits a sinusoidal signal with fre-
guency 1000 Hz, and the signal reflects off an object moving toward the transmitter. The received signal
can be found in the MrLAB workspacdab3 data.mat . The signal vector is callesl sonar and
the support vector is sonar . The speed of sound in salt water is approximately 1450 meters/second.
(Note: because the signal is rather long, it may take a little while for FAPE to run.)

e [4] Estimate the speed of the object.

Food for thought: Useandn to add some random noise gasonar and observe how your estimate
changes. How much noise do you need to add to produce an error? Does the system degrade gracefully?
(Thatis, is the amount of error proportional to the amount of noise?)

4. On the front page of your report, please provide an estimate of the average amount of time spent outside of lab
by each member of the group.
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