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Laboratory 3

Sinusoids and Sinusoidal Correlation

3.1 Introduction

Sinusoidsare important signals. Part of their importance comes from their prevalence in the everyday world, where
many signals can be easily described as a sinusoid or a sum of sinusoids. Another part of their importance comes from
their properties when passed through linear time-invariant systems. Any linear time-invariant system whose input is a
sinusoid will have an output that is a sinusoid of the same frequency, but possibly with different amplitude and phase.
Since a great many natural systems are linear and time-invariant, this means that sinusoids form a powerful tool for
analyzing systems.

Being able to identify the parameters of a sinusoid is a very important skill. From a plot of the sinusoid, any
student of signals and systems should be able to easily identify the amplitude, phase, and frequency of that sinusoid.

However, there are many practical situations where it is necessary to build a system that identifies the ampli-
tude, phase, and/or frequency of a sinusoid — not from a plot, but from the actual signal itself. For example, many
communication systems convey information bymodulating, i.e. perturbing, a sinusoidal signal called acarrier. To
demodulatethe signal received at the antenna, i.e. to recover the information conveyed in the transmitted signal, the
receiver often needs to know the amplitude, phase, and frequency of the carrier. While the frequency of the sinusoidal
carrier is often specified in advance, the phase is usually not specified (it is just whatever phase happens to occur when
the transmitter is turned on), and the amplitude is not known because it depends on the attenuation that takes place
during transmission, which is usually not known in advance. Moreover, though the carrier frequency is specified in
advance, no transmitter can produce this frequency exactly. Thus, in practice the receiver must be able to “lock onto”
the actual frequency that it receives.

Doppler radar provides another example. With such a system, a transmitter transmits a sinusoidal waveform at
some frequencyfo. When this sinusoid reflects off a moving object, the frequency of the returned sinusoid is shifted
in proportion to the velocity of the object. A system that determines the frequency of the reflected sinusoid will also
be able to determine the speed of the moving object.

How can a system be designed that automatically determines the amplitude, frequency and phase of a sinusoid?
One could imagine any number of heuristic methods for doing so, each based on how you would visually extract
these parameters. It turns out, though, that there are more convenient methods for doing so – methods which involve
correlation. In this lab, we will examine how to automatically extract parameters from a sinusoid using correlation.
Along the way, we will discover how complex numbers can help us with this task. In particular, we will make use of
thecomplex exponential signaland see the mathematical benefits of using an “imaginary” signal that does not really
exist.
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Laboratory 3. Sinusoids and Sinusoidal Correlation

3.1.1 “The Question”

• How can we design a system that automatically determines the amplitude and phase of a sinusoid with a known
frequency?

• How can we design a system that automatically determines the frequency of a sinusoid?

3.2 Background

3.2.1 Complex numbers

Before we begin, let us quickly review the basics of complex numbers. Recall the a complex numberz = x + jy is
defined by itsreal part, x, and itsimaginary part, y, wherej =

√
−1. Also recall that we can rewrite any complex

number intopolar form1 or exponential form, z = rejθ , wherer = |z| is themagnitudeof the complex number and
θ = angle(z) is theangle. We can convert between the two forms using the formulas

x = r cos(θ) (3.1)

y = r sin(θ) (3.2)

and

r =
√
x2 + y2 (3.3)

θ =

{
tan−1

(
y
x

)
, x ≥ 0

tan−1
(
y
x

)
+ π, x < 0

(3.4)

A common operation on complex numbers is thecomplex conjugate. The complex conjugate of a complex number,
z∗, is given by

z∗ = x− jy (3.5)

= re−jθ (3.6)

Conjugation is particularly useful becausezz∗ = |z|2.
Euler’s2 formula is a very important (and useful) relationship for complex numbers. This formula allows us to

relate the polar and rectangular forms of a complex number. Euler’s formula is

ejθ = cos(θ) + j sin(θ) (3.7)

Equally important are Euler’s inverse formulas:

cos(θ) =
ejθ + e−jθ

2
(3.8)

sin(θ) =
ejθ − e−jθ

2j
(3.9)

It is strongly recommendedthat you commit these three equations to memory; you will be using them regularly
throughout this course.

1Sometimes the polar form is written asz = r\θ, which is a mathematically less useful form. This form, however, is useful for suggesting the
interpretation ofr as a radius andθ as an angle.

2Pronounced “oiler’s”.
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3.2.2 Sinusoidal and complex exponential signals in continuous time

3.2.2 Sinusoidal and complex exponential signals in continuous time

Recall that a continuous-time sinusoid instandard form, s(t), is given by the formula

s(t) = A cos(ω0t+ φ), (3.10)

whereA > 0 is the sinusoid’samplitude,ω0 is the sinusoid’sfrequencygiven inradian frequency(radians per second),
andφ is the sinusoid’sphase. It is also common to represent such a sinusoid in the following form

s(t) = A cos(2πf0t+ φ), (3.11)

wheref0 is the sinusoid’s frequency given in Hertz (Hz, or cycles per second). Note thatω0 = 2πf0. The frequency
of a sinusoid is generally restricted to be positive.

The notation for sinusoids also extends to a special signal known as thecomplex exponential signal3. Complex
exponential signals are very similar to sinusoids, and have the same three parameters. We define a continuous-time
complex exponential signal,c(t), in standard form as

c(t) = Aej(ω0t+φ) (3.12)

It is generally useful to consider that sinusoids are composed of a sum of complex exponential signals by using Euler’s
inverse formulas. Thus, a sinusoid in standard form can be rewritten in several different ways:

s(t) = A cos(ω0t+ φ) (3.13)

=
A

2

[
ej(ω0t+φ) + e−j(ω0t+φ)

]
(3.14)

=
A

2
(c(t) + c∗(t)) (3.15)

= Re
{
Aej(ω0t+φ)

}
(3.16)

Using Euler’s formula, we can also interpret a complex exponential signalc(t) as the sum of a real cosine wave and
an imaginary sine wave:

c(t) = A cos(ω0t+ φ) + jA sin(ω0t+ φ) (3.17)

Sometimes it is useful to visualize a complex exponential signal as a “corkscrew” in three dimensions, as in Figure
3.1. Note that it is common to permit complex exponential signals to have either positive or negative frequency. The
sign of the frequency determines the “handedness” of the corkscrew.

3.2.3 Finding the amplitude and phase of a sinusoid with known frequency

We’ve suggested that we can usecorrelation to help us determine the amplitude and phase of a sinusoid with known
frequency. Suppose that we have a continuous-time sinusoid (thetarget sinusoid)

s(t) = A cos(ω0t+ φ) (3.18)

with known frequencyω0, but unknown amplitudeA and phaseφ, which we would like to find. We can perform in-
place correlation4 between this sinusoid and areference sinusoid, u(t), with the same frequency and known amplitude

3These are sometimes referred to simply ascomplex exponentials.
4In-place correlation between two real, continuous-time signals,x(t) andy(t) is defined asC(x, y) =

∫ b
a
x(t)y(t)dt. The length(b − a) is

thecorrelation length.
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Figure 3.1: Three-dimensional plot of a complex exponential signal.

and phase. Without loss of generality, letu(t) haveA = 1 andφ = 0. Then5,

C(s, u) =

∫ t2
t1

A cos(ω0t+ φ) cos(ω0t)dt (3.19)

=
A

2

∫ t2
t1

cos(φ) + cos(2ω0t+ φ)dt (3.20)

=
A

2

[
cos(φ)t+

1

2ω0
sin(2ω0t+ φ)

]t2
t1

(3.21)

Since we know the frequency,ω0, we can easily set the limits of integration to include an integer number of funda-
mental periods of our sinusoids. In this case, the second term evaluates to zero and the correlation reduces to

C(s, u) =
A

2
cos(φ)(t2 − t1) (3.22)

This formula is a useful first step. If we happen to know the phaseφ, then we can readily calculate the amplitudeA of
s(t) fromC(s, u). Similarly, if we know the amplitudeA, we can narrow the phaseφ down to one of two values. If
both amplitude and phase are unknown, though, we cannot uniquely determine them.

If the interval over which we correlate is not a multiple of the fundamental period ofu(t), then the second term in
equation (3.21) may be nonzero. However, if as commonly happensω0 is much greater than one, then the second term
will be so small that it can be ignored, and equation (3.22) holds with approximate equality.

To resolve the ambiguity when both amplitude and phase are unknown, one common approach to correlate with a
second reference sinusoid that isπ2 out of phase with the first. Here, though, we will explore a different method which
is somewhat more enlightening. Notice what happens if we use a complex exponential,

c(t) = ejω0t (3.23)

5Recall thatcos(A) cos(B) = 1
2
cos(A−B) + 1

2
cos(A+ B).
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3.2.3 Finding the amplitude and phase of a sinusoid with known frequency

as our reference signal6:

C(s, c) =

∫ t2
t1

s(t)c∗(t) dt (3.24)

=

∫ t2
t1

A cos(ω0t+ φ)e
−jω0t dt (3.25)

=

∫ t2
t1

A

2

[
ej(ω0t+φ) + e−j(ω0t+φ)

]
e−jω0t dt (3.26)

=
A

2

∫ t2
t1

ejφ + e−j(2ω0t+φ) dt (3.27)

=
A

2

[
ejφt+

−1

2jω0
e−j(2ω0t+φ)

]t2
t1

(3.28)

If we again assume that we are correlating over an integer number of periods of our target sinusoid, then the second
term goes to zero and we are left with

C(s, c) =
A

2
ejφ(t2 − t1). (3.29)

Our correlation has resulted in a simple complex number whose magnitude is directly proportional to the amplitude of
the original sinusoid and whose angle is identically equal to its phase! We can easily turn the above formula inside-out
to obtain

A =
2

t2 − t1
|C(s, c)| (3.30)

φ = angle(C(s, c)) (3.31)

We can also see from equation (3.29) that in correlating with a complex exponential signal, we have effectively
calculated the phasor7 representation of our sinusoid.

As with the case of correlating with a sinusoid, we note that when the interval over which we correlate is not
a multiple of the fundamental period ofc(t), then the second term in equation (3.28) is not zero. However, if as
commonly happensω0 is much greater than 1, then the second term will again be small enough that it can be ignored,
and equations (3.29), (3.30), and (3.31) hold with approximate equality.

The Amplitude and Phase Calculator

In this lab we will implement a system that estimates the amplitude and phase of a sinusoid with a known frequency.
Since we will do this using a computer and MATLAB , we must necessarily work with sampled version of the signals
s(t) andc(t). Specifically, ifTs denotes the sampling period, then we work with the discrete-time signals

s[n] = s(nTs) = A cos(ω0Tsn+ φ) (3.32)

c[n] = c(nTs) = e
jω0Tsn (3.33)

As shown below, whenTs is small, the correlation betweens(t) andc(t) can be approximately computed from the
correlation betweens[n] andc[n]. Let{n1, . . . , n2} denote the discrete-time interval corresponding to the continuous-
time interval[t1, t2], and letN = n2 − n1 + 1 denote the number of samples taken in the interval[t1, t2], so that

6Notice that we conjugate our complex exponential here. This is because correlation between twocomplexsignals is defined as
∫
x(t)y∗(t)dt.

7When we represent a sinusoid with amplitudeA and phaseφ as the complex numberAejφ to simplify the calculation of a sum of two or more
sinusoids, this complex number is known as aphasor.
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Figure 3.2: System diagram for the “amplitude and phase calculator.”

t2 − t1 ≈ NTs. Then,

C(s, c) =

∫ t2
t1

s(t) c∗(t) dt (3.34)

=

n2∑
n=n1

∫ (n+1)Ts
nTs

s(t) c∗(t) dt (3.35)

≈
n2∑
n=n1

∫ (n+1)Ts
nTs

s(nTs) c
∗(nTs) dt (3.36)

=

n2∑
n=n1

s(nTs) c
∗(nTs)Ts (3.37)

=

n2∑
n=n1

s[n] c∗[n] Ts (3.38)

= Cd(s, c)Ts (3.39)

where the approximation leading to the third relation is valid becauseTs is small, and consequently the signalss(t) and
c(t) change little over eachTs second sampling interval, and where we useCd(s, c) to denote the correlation between
the discrete-time signalss[n] andc[n], to distinguish it from the correlation between continuous time signalss(t) and
c(t). We see from this derivation that the continuous-time correlation is approximately the discrete-time correlation
multiplied by the sampling interval, i.e.

C(s, c) ≈ Cd(s, c)Ts (3.40)

We will use this value of correlation in equations (3.30) and (3.31) to estimate the amplitude and phase of a continuous-
time sinusoid.

In the laboratory assignment, we will be implementing an “amplitude and phase calculator” (APC) as a MATLAB

function. A diagram of this system is shown in Figure 3.2. The system takes three input parameters. The first is the
signal vectorwhich contains the sinusoid itself. The second is thesupport vectorfor the sinusoid. The third input
parameter is the frequency of the reference sinusoid in radians per second. Note that for the system’s output to be
exact, the input sinusoid must be defined over exactly an integer number of fundamental periods.

The system outputs the sinusoid’s amplitude and its phase in radians. The system calculates these outputs by
first computing the in-place correlation given by equations (3.37) or (3.38). Then, this correlation value is used with
equations (3.30) and (3.31) to compute the amplitude and phase. Note that in equation (3.30), we need to replace
t2 − t2 with N = n2 − n1 + 1 when implementing in discrete time.
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3.2.4 Determining the frequency of a target sinusoid

3.2.4 Determining the frequency of a target sinusoid

Suppose now that we are given the task of making a system that automatically determines the frequency of a target
sinusoid. It turns out that correlation can help us with this problem as well. Consider the following case. Let the target
sinusoid be defined bys(t) = A cos(ωst+φ), whereωs,A, andφ are all unknown. We correlates(t) with a complex
exponential signal,c(t) = ejωct, with frequencyωc, whereωs 6= ωc:

C(s, c) =

∫ t2
t1

s(t)c∗(t) dt (3.41)

=

∫ t2
t1

A cos(ωst+ φ)e
−j(ωct)dt (3.42)

=

∫ t2
t1

A

2

[
ej(ωst+φ) + e−j(ωst+φ)

]
e−j(ωct) dt (3.43)

=
A

2

∫ t2
t1

ej[(ωs−ωc)t+φ] + e−j[(ωs+ωc)t+φ] dt (3.44)

=
A

2

[
1

ωs − ωc
ej[(ωs−ωc)t+φ] +

1

ωs + ωc
e−j[(ωs+ωc)t+φ]

]t2
t1

(3.45)

Here, let us make a simplifying assumption and assume that(ωs + ωc) is sufficiently large that we can neglect the
second term. Then, we have

C(s, c) ≈
A

2(ωs − ωc)

[
ej[(ωs−ωc)t2+φ] − e−j[(ωs−ωc)t1+φ]

]
(3.46)

The resulting equation depends primarily on the frequency difference(ωs − ωc) between the target sinusoid and our
reference signal. Though it is not immediately apparent, the value of this correlation converges to the value of equation
(3.29) as the(ωs − ωc) approaches zero.

Consider now the length-normalized correlation,C̃(s, c), defined as

C̃(s, c) =
C(s, c)

t2 − t1
. (3.47)

One can see from equation (3.29) that when the reference and target signals have the same frequency, the length-
normalized correlation does not depend on the length of the signal. However, when the signals have different frequen-
cies, one can see from equations (3.46) and (3.47) that the magnitude of the length-normalized correlation becomes
smaller as we correlate over a longer period of time. (This happens more slowly as the frequency difference becomes
smaller.) In the limit as the correlation length goes to infinity,the length-normalized correlation goes to zero unless
the frequencies match exactly. This is a very important theoretical result in signals and systems.

Another special case occurs when we correlate over acommon periodof the target and reference signals. This
occurs when our correlation interval includes an integer number of periods ofboth the target signal and reference
signal. In this case, the correlation in equation (3.46), for signals of different frequencies, is identically zero8. Of
course, the correlation isnot zero when the frequencies match. Note that this is the same condition required for
equation (3.29) to be exact.

How does all of this help us to determine the frequency of the target sinusoid? The answer is perhaps less elegant
than one might hope; basically, we “guess and check”. If we have no prior knowledge about possible frequencies
for the sinusoid, we need to check the correlation with complex exponentials having a variety of frequencies. Then,
whichever complex exponential yields the highest correlation, we take the frequency of that complex exponential as
our estimate of the frequency of the target signal. In the next section, we will formalize this algorithm.
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A frequency estimation algorithm

Suppose that we have a continuous-time target sinusoids(t) with support[0, T ] with unknown amplitude, frequency,
and phase. To estimate these parameters, we’ll calculate the length-normalized correlation between this signal and
reference complex exponentials with various frequencies over the signal’sT second length. Then, we look for the
frequency that produces the largest correlation.

We choose the frequencies of these complex exponentials to be multiples1/T so that the correlation is over an
integer number of periods of each complex exponential. That is, the frequencies will be1/T, 2/T, . . .. As in the
previous subsection, we’ll need to approximately compute the correlation from samples ofs(t) and each reference
exponential, taken with some small sampling intervalTs. For convenience we’ll takeN samples and chooseTs =
T/N for some large even integerN . With samples taken at intervals ofTs seconds, we cannot hope to do a good job
of correlating with complex exponentials with very high frequency. The rule of thumb that you will learn in Chapter 4
is that, at the very least, two samples are needed from each period of the signal being sampled. Therefore, the highest
frequency with which we will correlate is, approximately,1/(2Ts). Specifically, we will correlates(t) with complex
exponentials at frequencies

1

T
,
2

T
, . . . ,

N

2T
=
1

2Ts
(3.48)

Then, fork = 1, 2, . . . , N/2, the length normalized correlation ofs(t) with the complex exponential at frequencyk
T

is (using equations (3.37), (3.38) and (3.47))

X [k] ≈
1

T

N−1∑
n=0

s(nTs) e
−j2π kT nTsTs (3.49)

=
1

N

N−1∑
n=0

s[n] e−j2π
k
N n (3.50)

where we have used the fact thatTs/T = 1/N and where we have denoted the resultX [k] because this is the notation
used in future labs for the last formula above. Thus, the output output of these correlations is the set ofN/2 numbers
X [1], . . . , X [N/2]. Remember thatX [k] will generally be complex. To estimate the frequency of the target sinusoid,
we simply identify the value ofk for which |X [k]| is largest. Withkmax denoting this value, our estimated frequency,
ωest, is

ωest = 2π
kmax

T
= 2π

kmax

NTs
(3.51)

Now that we have estimated the frequency, we should also be able to estimate the amplitude and phase as well. In
fact, we have almost calculated these estimates already. From equations (3.30) and (3.31), they are:

Aest = 2|X [kmax]| (3.52)

φest = angle(X [kmax]) (3.53)

There is one potential problem here, however. Previously, we assumed the frequency was known exactly when deter-
mining the amplitude and phase; now, we only know the frequency approximately. In the laboratory assignment, we
will see the effect of this approximation.

In the laboratory assignment, we will be developing a system that can automatically estimate the amplitude, phase,
and frequency of a sinusoid. A block diagram of the “frequency, amplitude, and phase estimator” (FAPE) system
is given in Figure 3.3. Unlike the APC, this system takes only two input parameters: a signal vector and the corre-
sponding support vector. The system has four output parameters. The first three are the estimates of the frequency,
amplitude, and phase of the input sinusoid. The fourth is the vector of correlationsX [1], . . . , X [N/2] produced by the
correlations. It is often useful to examine this vector to get a sense of what the system is doing.
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Figure 3.3: System diagram for the “frequency, amplitude, and phase estimator.”

Estimating doppler shift

When a sinusoidal transmitted signal reflects off an object moving towards the transmitter at speedvo, the signal
returned to the transmitter is again a sinusoid, but with the higher frequency

ωr = ωt ∗
v

v − vo
(3.54)

whereωt is the original frequency of the transmitted signal andv is the speed of propagation in the given medium.
This is called theDoppler shiftphenomenon. If one measuresωr, e.g. with FAPE, then one can use equation (3.54)
to compute the speed of the objectvs, assuming of course, thatωt andv are known. Indeed, this is how radar systems
are able to measure the speed of automobiles, airplanes, baseballs, wind, etc. In the lab assignment you will be asked
to estimate the velocity of an underwater object from a reflection of a sonar signal.

3.3 SomeMATLAB commands for this lab

• Constructing complex numbers: MATLAB represents all complex numbers in rectangular form. To enter
a complex number, simply type5 + 6*j (for instance). Note that bothi and j are used to represent

√
−1

(unless you have used one or the other as some other variable). To enter a complex number in polar form, type
2*exp(j*pi/3) (for instance).

You may be wondering how MATLAB actually works with complex numbers, given that complex numbers are,
in general, the sum of a real number and an imaginary one. The fact is that the imaginary component of a
complex number is in fact areal number, which MATLAB stores in the usual way. It thinks of a complex
number as a pair of floating point numbers, one to be interpreted as the real part and the other to be interpreted
as the imaginary part. And it knows the rules of arithmetic to apply to such pairs of numbers in order to do what
complex arithmetic is supposed to do.

• Extracting parts of complex numbers: If z contains a complex number (or an array of complex numbers),
you can find the real and imaginary parts using the commandsreal(z) andimag(z) , respectively. You can
obtain the magnitude and angle of a complex number (or an array of complex numbers) using the commands
abs(z) andangle(z) , respectively.

• Complex conjugation: To compute the complex conjugate of a value (or array)z , simply use the MATLAB

commandconj(z) .

• Finding the index of the maximum value in a vector: Sometimes we don’t just want to find the maximum
value in a vector; instead, we need to know where that maximum value is located. Themax command will do
this for us. Ifv is a vector and you use the command

>> [max_value, index] = max(v);
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the variablemax_value will contain largest value in the vector, andindex contains position ofmax_value
in v .

• MATLAB commands to help you visually determine the amplitude, frequency, and phase of a sinusoid:
Sometimes you may need to determine the frequency, phase, and amplitude of a sinusoid from a MATLAB

plot. In these cases, there three commands that are quite useful. First, the commandgrid on provides in-
cludes a reference grid on the plot; this makes it easier to see where the sinusoid crosses zero (for instance).
The zoom command is also useful, since you can drag a zoom box to zoom in on any part of the sinusoid.
Finally, you can useaxis in conjunction withzoom to find the period of the signal. To do so, simply
zoom in on exactly one period of the signal and typeaxis . MATLAB will return the current axis limits as
[x_min, x_max, y_min, y_max] .

• Calling apc : The functionapc , which you will be writing in this laboratory, estimates amplitude and phase
of a continous-time target sinusoid from its samples. The input parameters are a (sampled) target sinusoids ,
the sinusoid’s support vectort , and the continuous-time frequencyw0 in radians per second. We callapc like
this:

>> [A,phi] = apc(s,t,w0);

Note that a compiled version of this function, calledapc_demo.dll , is also available.

• Calling fape : The functionfape , which you will be writing in this laboratory, implements the frequency,
amplitude, and phase estimator system. This function accepts the samples of a target continuous-time sinusoid
s and it’s support vectort , like this:

>> [frq,A,phi,X] = apc(s,t);

wherefrq is the estimated frequency in radians per second,A is the estimated amplitude,phi is the estimated
phase, andX is the vector of correlations,X [1], . . . , X [N/2] betweens and each reference complex exponential.
Note that a compiled version of this function called,fape_demo.dll , is also available.

3.4 Demonstrations in the Lab Section

• Complex Numbers in MATLAB

• Sinusoids and complex exponentials in MATLAB

• Sinusoidal correlation: matching frequencies

• Sinusoidal correlation: different frequencies

• FAPE: the Frequency, Amplitude, and Phase Estimator

3.5 Laboratory Assignment

1. (Understanding sinusoids) Execute the following commands:

>> t = linspace(-0.5, 2, 1000);
>> plot(t,cos(linspace(-7.5,27,1000)),'k:');
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(a) (Extracting sinusoid parameters) Visually identify the amplitude, continuous-time frequency, and phase of
the continuous-time (sampled) sinusoid that you’ve just plotted.

• [4] Include your estimated values in your report. Reduce your answers to decimal form.
• [3] What is the phasor that corresponds to this sinusoid? Write it in both rectangular and polar form.

(Again, keep your answers in decimal form. You should use MATLAB to perform these calculations.)

(b) (Checking your parameters) Verify your answers in the previous problem by generating a sinusoid using
those parameters and plotting them on the above graph usinghold on . Uset as your time axis/support
vector. The new plot should be close to the original, but it does not need to be exactly correct.

• [3] Include the resulting graph in your report. Remember to include alegend .

2. (The Amplitude and Phase Calculator) In this problem we will complete and test a function which implements
the “Amplitude and Phase Calculator”, as described in Section 3.2.3. Download the fileapc.m . This is a
“skeleton” M-file for the “amplitude and phase calculator”. Also, generate the following sinusoid (s_test )
with its support vector (t_test ):

>> t_test = 0:0.01:.99;
>> s_test = 1.3*cos(t_test*10*pi + 2.8);

(a) (Identify sinusoid parameters by hand) What are the amplitude, frequency in radians per second, and phase
of s_test ?

• [2] Include your answers in your lab report.

(b) (Write the APC) Complete the functionapc . You should use the signals_test to test the operation of
your function. You may also wish to use the compiled functionapc_demo.dll to test your results on
other sinusoids.

• [10] Include the code forapc in your MATLAB appendix.

(c) (Test APC on a sinusoid with unknown parameters)
Download the filelab3_data.mat . This .mat file contains the support vector (t_samp ) and signal
vector (s_samp) for a sampled continuous-time sinusoid with a continuous-time frequency ofω0 = 200π
radians.

• [4] From t_samp , determine the sampling period,Ts, of this signal.
• [3] Useapc 9 to determine the amplitude and phase of the sinusoid exactly.

(d) (APC in a non-ideal case) What happens if we useapc to correlate over a non-integral number of periods
of our target sinusoid? We will investigate this question in this problem and the next. First, let’s examine
a single non-integral number of periods. Generate the following sinusoid:

>> apc_support = 0:0.1:8;
>> apc_test = cos(apc_support*2*pi/3);

This is a sinusoid with a frequency ofω0 = 2π
3 radians per second, unit amplitude, and zero phase shift.

• [2] Plot apc_test and include the plot in your report.
• [2] What is the fundamental period ofapc_test ?
• [2] Approximately how many periods are included inapc_test ?
• [2] Useapc to estimate the amplitude and phase of this sinusoid. What are the amplitude and phase

errors for this signal?
9If you failed to correctly completeapc.m , you may useapc demo.dll for the following problems. If you use the demo function, please

indicate this in your lab report.
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(e) (APC in many non-ideal cases) Now we wish to examine a large number of different lengths of this
sinusoid. You will do this by writing afor loop that repeats the previous part for many different values of
the length of the incoming sinusoid. Specifically, write afor loop with loop countersupport_length
ranging over values of1:0.1:50 seconds. In each iteration of the loop, you should

i. Setapc_support equal to0:0.1:(support_length-0.1) ,

ii. Recalculateapc_test using the newapc_support ,

iii. Use apc to estimate the amplitude and phase ofapc_test , and

iv. Store these estimates in two separate vectors.

Put your code in an M-file script so that you can run it easily.

• [8] Include your code in the MATLAB appendix.

• [4] Use subplot to plot the amplitude and phase estimates as a function of support length in two
subplots of the same figure. You should be able to see both local oscillation of the estimates and a
global decrease in error with increased support length.

• [3] At what support lengths are the amplitude estimates correct (i.e., equal to 1)?

• [3] What minimum support length do we need to be sure that the phase error is less than 0.01 radians?

3. (The Frequency, Amplitude, and Phase Estimator) In this problem, we’ll explore the frequency, amplitude and
phase estimator, as described in Section 3.2.4. Download the filefape.m . This is a “skeleton” M-file for the
“frequency, amplitude, and phase estimator” system.

(a) (Write the FAPE) Complete thefape function. You can uset_test ands_test from Problem 2 along
with the compiledfape_demo.dll to check your function’s results.

• [16] Include the completed code in your report’s MATLAB appendix.

• [3] What are the frequency (in radians per second), amplitude, and phase estimates returned byfape
for t_test ands_test ? Are these estimates correct?

• [3] Usestem andabs to plot the magnitude of the vector of correlations returned byfape versus
the associated frequencies.

• [3] What do you notice about this plot? What can you deduce from this fact? (Hint: Consider what
this plot tells you about the returned estimates.)

(b) (Running FAPE on in a non-ideal case) In this problem, we’ll see what happens to FAPE when the tar-
get sinusoid does not include an integral number of periods.lab3_data.mat contains the variables
fape_test_t (a support vector) andfape_test_s (its associated sinusoidal signal). Runfape on
this signal.

• [3] What are the frequency in radians per second, amplitude, and phase estimates that are returned?

• [3] Usestem andabs to plot the magnitude of the returned vector of correlations.

• [4] Plot fape_test_s and a new sinusoid that you generate from the parameter estimates returned
by FAPE on the same figure (usinghold on ). Usefape_test_t as the support vector for the
new sinusoid. Make sure you use different line types and include a legend.

• [3] What can you say about the accuracy of estimates returned by FAPE?

• [3] Compare the plot of the correlations generated in this problem and in Problem 3a. What do these
different plots tell you?

Food for thought: Investigate the error characteristics offape as you did withapc in problem 2e. Do the
frequency, amplitude, and phase estimates improve as we use longer support lengths? Which parameter is
exhibits the most error? What does the vector of correlations,X [k], tell you about these estimates?
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3.5 Laboratory Assignment

(c) Measuring speed via Doppler shift. A sonar transmitter in the ocean emits a sinusoidal signal with fre-
quency 1000 Hz, and the signal reflects off an object moving toward the transmitter. The received signal
can be found in the MATLAB workspacelab3_data.mat . The signal vector is calleds_sonar and
the support vector ist_sonar . The speed of sound in salt water is approximately 1450 meters/second.
(Note: because the signal is rather long, it may take a little while for FAPE to run.)

• [4] Estimate the speed of the object.

Food for thought: Userandn to add some random noise tos sonar and observe how your estimate
changes. How much noise do you need to add to produce an error? Does the system degrade gracefully?
(That is, is the amount of error proportional to the amount of noise?)

4. On the front page of your report, please provide an estimate of the average amount of time spent outside of lab
by each member of the group.
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