64

The University of Michigan, All rights reserved



Laboratory 4

Fourier Series and the DFT

4.1 Introduction

As emphasized in the previous lab, sinusoids are an important part of signal analysis. We noted that many signals
that occur in the real world are composed of sinusoids. For example, many musical signals can be approximately
described as sums of sinusoids, as can some speech sounds (vowels in particular). It turns out that any periodic signal
can be written exactly as a sum of amplitude-scaled and phase-shifted sinusoids. Equivalently, we can use Euler's
inverse formulas to write periodic signals as sums of complex exponentials. This is a mathematically more convenient
description, and the one that we will adopt in this laboratory and, indeed, in the rest of this course. The description of
a signal as a sum of sinusoids or complex exponentials is known apéc&runof the signal.

Why do we need another representation for a signal? Isn’t the tiswe&ldomairrepresentation enough? It turns
out that spectral (direquency-domalirepresentations of signals have many important properties. First, a frequency-
domain representation may be simpler than a time-domain representation, especially in cases where we cannot write an
analytic expression for the signal. Second, a frequency-domain representation of a signal can often tell us things about
the signal that we would not know from just the time-domain signal. Third, a signal’s spectrum provides a simple way
to describe the effect of certain systems (likeers) on that signal. There are many more uses for frequency-domain
representations of a signal, and we will examine many of them throughout this course. Spectral representations are
one of the most central ideas in signals and systems theory, and can also be one of the trickiest to understand.

Consider the following problem. Suppose that we have a signal that is actually the sum of two different signals.
Further, suppose that we would like to separate one signal from the other, but the signals overlap in time. If the signals
have frequency-domain representations that do not overlap, it is still possible to separate the two signals. In this way,
we can see that frequency-domain representations provide another “dimension” to our understanding of signals.

In this laboratory, we will examine two tools that allow us to use spectral representationsoditer Seriess
a tool that we use to work with spectral representations of periodic continuous-time signalBisthete Fourier
Transform(DFT) is an analogous tool for periodic discrete-time signals. Each of these tools allowrm¥sis(the
determination of the spectrum of the time-domain signal) @mdhesigthe reconstruction of the time-domain signal
from its spectrum). Though you may not be aware of it, you have already performed DFT analysis; the “frequency,
amplitude, and phase estimator” system that you implemented in Laboratory 3 actually performs DFT analysis.

4.1.1 *“The Questions”

e How can we determine the spectral content of signals?

e How can we separate signals that overlap in time?
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Figure 4.1: (A) A time-domain representation of a signal. (B) A frequency-domain representation of the same signal
produced with the Fourier Series.

4.2 Background

4.2.1 Frequency-domain representations

This section provides an overview to the Fourier series approach of the frequency-domain representation of continuous-
time signals.

So far, we have typically thought of signals as time-varying quantities slikKe When we plot these signals, we
generally place time along the horizontal axis and signal value along the vertical axis. The idea behind the frequency-
domain representation of a signal is similar. Rather than plotting signal value versus time, we plot a spectral value
versusfrequency Doing this involves aransformationof the signal. Figure 4.1 shows an example of a time-domain
and frequency-domain representation of a signal. Note that we can think of the result of the transform as a signal as
well, a signal whose independent variable is frequency rather than time.

The frequency domain representation of a signal (i.espigstrunyis easy to construct when the signal is composed
of a sum of simple complex exponential signals. In this case, the spectrum consists of a few sudateal lines
(“spikes™) on the frequency axt the frequencies of those complex exponentiglese spectral lines are complex-
valued, and their magnitudes and angles equal the amplitudes and phases of the corresponding complex exponentials.
Alternatively, we may draw two separate spectral line plots — one showing the magnitude and the other showing their
angles.

If we add more complex exponentials to our signal, then we simply add more spectral lines to its frequency-domain
representation. Eventually, if we add enough complex exponentials (possibly an infinite number), we cangreate
signal that we might want. This includes signals that do not look very sinusoidal, like square waves and sawtooth
waves. We will use this result for periodic signals in this laboratory assignment.

4.2.2 Periodic Continuous-Time Signals — The Fourier Series

Suppose that we have a periodic continuous-time sigftaiwith periodT seconds. We have claimed tlaaty such
signal can be represented as a sum of complex exponential signals. We now assert that these complex exponentials
have harmonically related frequencies. Specifically, their frequencies (in radians per secondhéomoaic series

...,—3u.)0,—2(00,—WQ,O,LUQ,QLUQ,?)LUO,... s (41)
where 5
™

is thefundamental frequencylhe frequencyiwg, & > 2, is called thek-th harmonicof the fundamental frequency,
or thek-th harmonic frequency for short.
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4.2.2 Periodic Continuous-Time Signals — The Fourier Series

Next we assert that the representatios @) in terms of complex exponentials with these frequencies is given by
the Fourier Series synthesis formdla

s(t) = .. .a_gejzﬂgz)t + oz_leth +ape? T4 el T aped Tl
o0
= Z akej#t, 4.3)
k=—o0

where theny’s, which are calledrourier coefficients The Fourier coefficients are determined by Hoeirier series
analysis formula

— s(t)e 9 F 1 dt | (4.4)
T Jizy)

Wheref<T> indicates an integral over affysecond interval In other words, the Fourier synthesis formula shows that
the complex exponential components¢f) at frequency?%k is

-27rkt

akej T (45)

Similarly, the Fourier analysis formula shows how the complex exponential components can be determiné from
even when no exponential components are evident.

In general, the Fourier coefficients, i.e. thg's, are complex. Thus, they have a magnitldg| and a phase
or angleZay. The magnitudex| can be viewed as the strength of the exponential component at fregkeney
27k /T, while the angleZqay, gives the phase of that component. The coefficignts theDC term it measures the
average value of the signal over one period.

Once we know they's, the spectrum aof(¢) is simply a plot consisting of spectral lines at frequencies

ey —2(4)0, —wo, 0,(4)0, 2&)0, e

The spectral line at frequenéyw, is drawn with height indicating the magnitufte, | and is labeled with the complex
value ofay. Alternatively, two separate spectral line plots can be drawn — one showinghie and the other
showing theZay’s.

Notice that the Fourier synthesis formula is very similar to the formula given in Lab 3 for the correlation between
a sinusoid and a complex exponential. Indeed it has the same interpretation: in conaputiregare computing the
correlatiorf between the signal(t) and a complex exponential with frequereyk /T. Thought of another way, this
correlation gives us an indication bébw muchof a particular complex exponential is contained in the sig(dl

Partial Series

Notice the infinite limits of summation in the synthesis formula (4.3). This tells us that, for the general case, we need
an infinite number of complex exponentials to represent our signal. However, in practical situations, such as in this
lab assignment, when we use the synthesis formula to determine signal values, we can generally only include a finite
number of terms in the sum. For example, if we use only the Nrgiositive and negative frequencies plus the DC

term (atk = 0), our approximate synthesis equation becomes

N
i2mhk
s(t) ~ Z aged Tt (4.6)
k=—N
1This is theexponential formof the Fourier series synthesis formula. There is alsimasoidal formwhich is presented later in this section.

S 27k
2Becauses(t)e s periodic with periodl’, this integral evaluates to the same value for any interval of lefigth
SActually, here we are computing what we called lévagth-normalized correlatian
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Fortunately, Fourier series theory shows that this approximation becomes better arfdasetter— oco. Alterna-
tively, it is known that the mean-squared value of the difference betw@gand the approximation tends to zero as
N — oo. Specifically, it can be shown that

MS <s<t>— > a—> = MS(s() = Y o’
k=—N k=—N

— 0asN — . 4.7

How large mustV be for the approximation to be good? There is no simple answer. However, you will gain some
idea by the experiments you perform in this lab assignment.

T-Second Fourier Series

If a signals(t) is periodic with period’, then it is also periodic with peric@ll’, and perio®7’, and so on. Thus when
applying Fourier series, we have a choice as to the valde ddften, we will choosél” to be the smallest period,
i.e. thefundamental periodf s(¢). However, there are also situations where we will not. For example, suppose we
wish to perform spectral analysis/synthesis of two or more periodic signals that have different fundamental periods.
We could of course form a separate Fourier series for each signal. In this case, each Fourier series will be based on
a different harmonic series of frequencies. Wouldn't it be nicer if we could base each series on a common harmonic
series of frequencies? We can do this by choo@irig be a multiple of the fundamental periods of both signals.

When we want to explicitly specify the value ®fthat is used in a Fourier series, we will sAysecond Fourier
series What then is the relationship between Fourier series corresponding to different valliesTaf see what is
happening, let us comparelasecond Fourier series to2d'-second Fourier series. TH&second Fourier series has
components at the frequencies

...,72&)0,—(4)0,0,&)0,2(,00,... y (48)
where 5
T
and the2T-second Fourier series has components at the frequencies.
ey 2w, —wh, 0, wh, 2wh, - = .., —Wo, —%,O, %,wo, cee (4.10)
where 5
’ s wo
=—=—_—. 4.11
Wo oT B ( )

From this we see that tH#'-second Fourier series decomposgg into frequency components with half the sepa-
ration of that of theT-second Fourier series. However, singe) is periodic with periodl’, its spectrum is actually
concentrated at frequencies that are multiplesgfor a subset thereof). Hence, the “additional” coefficients in the
2T-Fourier series must be zero, and it turns out that the nonzero coefficients are the same d6-&edbed Fourier
series. Specifically, it can be shown that with and«j, denoting thel'-second an@T-second Fourier coefficients,
respectively, then

0, k odd

In summary, Fourier series analysis/synthesis can be performed over one fundamental period or over any number
of fundamental periods. Usually, when Fourier series is mentioned, the desired number of periods interval will be
clear from context. In any case, the spectrum is not affected by the chdite of

Oé;c _ { Qg /2, k even (412)

4Itis known that under rather benign assumptions about the sigtialthe approximation converges #¢t) asN — oo at all timest where
s(t) is continuous, and at timeswheres(t) has a jump discontinuity, the approximation converges to the average of the values immediately to the
left and right of the discontinuity.
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4.2.2 Periodic Continuous-Time Signals — The Fourier Series

Aperiodic Continuous-Time Signals

Next, we briefly discuss how Fourier series can also be applied when the s{gnel not periodic. In this case, we
can nevertheless determine the spectrum of a fagitgnendf the signal, say from time, to timet., by performing
Fourier series analysis/synthesis on just this segment. That is, if we find Fourier coefficients

1 [t amk
= T/ s(t)e 1 dt (4.13)
t1
whereT = t, — t1, then we have
ad -2k
s(t)= > apel T forty <t<t,. (4.14)
k=—o00

This will give us an idea of the frequency content of the signal during the given time interval. It is important to
emphasize, however, that the synthesis equation (4.14) isardiidvhent is betweert; andt,. Outside of this time
interval, the synthesis formula will not necessarily equ{8). Instead, it describes a signal that is periodic with period
T, called theperiodic extensionf the segment between andts.

Properties of the Fourier Coefficients

We conclude our discussion of the Fourier series with a list of useful properties, some of which have already been

mentioned. A few of these will be useful in this lab assignment. The rest are included for completeness. These prop-
erties are stated without derivations. However, each can be derived straightforwardly from the analysis and synthesis
formulas. Though not required in this laboratory, you may want to confirm some of these properties using the Fourier

analysis and synthesis programs described in Section 4.3.

1. (Fourier series analysis) THesecond Fourier series analysis of a periodic sig@l with periodT" produces
a set of Fourier coefficientsy,, k = ..., —2,-1,0,0,1,2,.. ., which are, in general, complex valued.

2. (Frequency components)di. are the coefficients of thE-second Fourier series of the periodic sigs@) with
periodT’, then the frequency or spectral component(@f at frequency?z~ is el

3. (DC component) The coefficient equals the average or DC valuesgf).

4. (One-to-one relationship) There is a one-to-one relationship between periodic signals and Fourier coefficients.
Specifically, if s(t) ands’(t) are distinct periodic signals, each periodic with peri@d then theirT-second
Fourier coefficients are not entirely identical, i@, # o), for at least oné:. It follows that one can recognize
a periodic signal from its Fourier coefficients (and its period).

5. (Conjugate symmetry) K(¢) is a real-valued signal, i.e. its imaginary part is zero, then for any integer

a_p = o (4.15)
la—g| = ol (4.16)
éa,k = —éak . (417)

5By “distinct”, we mean thas(t) ands’ (t) are sufficiently different that(t) # s’(t) for all imest in some interval with(t1 , t2 ), with nonzero
length. They arenot “distinct” if they differ only at a set of isolated points. To see why we need this clarification, observe #ta} dnds’(t)
differ only at timet;, then they have the same Fourier coefficients, because integrals, such as those defining Fourier coefficients, are not affected by
changes to their integrands at isolated points. Likewd$g, ands’(¢) will have the same Fourier coefficients if they differ only at isolated times
t1,t2,.... However, ifs(t) # s'(t) for all t in an entire interval, no matter how small, thep # o, for at least onék.
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6. (Conjugate pairs) lf's are theT-second Fourier coefficients for a real-valued sigi{a), then for anyk the
sum of the complex exponential components @) corresponding tay, anda_ is a sinusoid at frequency
2wk /T. Specifically, using the inverse Euler relation,

- P 27k
akej%t + a,keﬂ%t = 2| cos(%t + Zoyg) . (4.18)

7. (Sinusoidal form of the Fourier synthesis formula) The previous property leads to the sinusoidal form of the
Fourier synthesis formula:

s 21k
s(t) = ap + Z 2| COS(%t + ZLayg) . (4.19)

k=—o00

8. (Linear combinations) l§(¢) ands’(t) haveT-second Fourier coefficients, anda;,, respectively, thens(t) +
bs'(t) hasT-second Fourier coefficientsy;, + bo),.

9. (Fourier series of elementary signals) The following listsfhgecond Fourier coefficients of some elementary

signals.
(a) Complex exponential signal(t) = e/ °7t —
1, k=m
ak{ o ktm (4.20)
(b) Cosineis(t) = cos(3%t) —
L k=+m
— 27
ap = { 0’ k 7& +m (4.21)
(c) Sine:s(t) = sin(3t) = '
f%, k =m
0, k#+tm
(d) General sinusoick(t) = cos(22t + ¢) =
lem’ k=m
Teib k=-m . (4.23)
0, k#+m

10. (I'-second Fourier series) If a periodic sigré) has periodl" andT'-second Fourier coefficients;, then the
nT-second Fourier coefficients are

, {ak/n, k = multiple ofn (4.24)

« =
k 0, else

11. (Parseval's relation) Hy,'s are theT-second Fourier coefficients for signgk), then the mean-squared value
of s(t), equivalently the power, equals the sum of the squared magnitudes of the Fourier coefficients. That is,

1
MS(S)—T/U> ()2 dt = Z g 2 (4.25)
k=—o00

12. (Uncorrelatedness/orthogonality of complex exponentials)THsecond correlation between complex expo-
. . S 2mTm S 27Tn . . . . . . .
nential signals’ “7 ¢ ande’ "7 t, m # n, is zero. This property is used in the derivation of the previous and
other properties.
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4.2.3 Periodic Discrete-Time Signals — The Discrete Fourier Transform

4.2.3 Periodic Discrete-Time Signals — The Discrete Fourier Transform

This section overview the discrete Fourier transform approach to the frequency-domain representation of discrete-time
signals.
Consider a periodic discrete-time signah] with period N. As with continuous-time signals, we wish to find

its frequency-domain representation, i.e. its spectrum. That is, we wish to reptpgesd a sum ofliscrete-time

complex exponential signals. Again, by analogy to the continuous-time case we will use frequencies that are multiples

of o
wo = N .

However, unlike the continuous-time case, we now use only a finite number of such frequencies. Specifically, we use

the N harmonically related frequencies:

(4.26)

0,30, 200, .- -, (N — 1)@ . (4.27)

The reason is that any complex exponential signal with the frequengis in fact identical to a complex exponential
signal with one of theéV frequencies listed abofeNotice that this set of frequencies ranges fi®to w which
is just a little less thaf.

We now assert that the representation|af in terms of complex exponentials with the above frequencies is given
by thediscrete-time Fourier series synthesis formataas we will usually call it, theéhe Discrete Fourier Transform
(DFT) synthesis formula

sin] = S[0]eIF " + S[1]eIF N 4 S[2ed T 4.+ S[N — 1)ed FRn
N-1
= S[kle? ¥ | (4.28)
k=0

1 o
Sk} = 5 D _slnle %", k=0,1,23,... N -1 (4.29)

where(N) indicates a sum over any consecutive integefse.g. the sum ova, ..., N.

As with the continuous-time Fourier series, the DFT coefficients are, in general, complex. Thus, they have a
magnitudg S[k]| and a phase or angléS[k|. The magnitudéS|[k]| can be viewed as the strength of the exponential
component at frequendyo, = 27k /N, while ZS[k] is the phase of that component. The coefficigfty] is theDC
term it measures the average value of the signal over one period.

Once we know theS[k]’s, the spectrum of[n] is simply a plot consisting of spectral lines at frequencies

0,30, 2o, - . ., (N — 1)@o.

The spectral line at frequené&yp, is drawn with heightindicating the magnitu@k]| and is labeled with the complex
value of S[k]. Alternatively, two separate spectral line plots can be drawn — one showin§[f€s and the other
showing theZS[k]'s.
Since the sums in the synthesis and analysis formulas are finite, there are no convergence-of-partial-sum issues,
such as those that arise for the continuous-time Fourier series.

81f k&g is not in this range, theh = mN + [ wherem # 0 and0 < [ < N. It then follows that the complex exponential with this frequency
2w (mN+1)
- ~N n

ised N = ¢l = eI2mmn I T — IR ™, which is an exponential with one of thé frequencies in the list above.

27k, . . . . . . . .
"Becauses[n]e 7 "N ™ is periodic with periodV, the sum is the same for any choiceléfconsecutive integers.
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Often the DFT coefficient§[0], ..., S[N] are said to be the “DFT of the signaln|” and the process of com-
puting them via the analysis equation (4.29) is called “taking the DFTS[of. Conversely, applying the synthesis
equation (4.28) is often called “taking the inverse DFT'S§d], . . ., S[V].

Notice that the DFT analysis formula (4.29) is identical to equation (3.45) in Lab 3. That is, in computing the set
of correlations between a signgh| and the various complex exponentials in Lab 3, we were actually taking the DFT
of s[n]. Indeed, it continues to be helpful to view the DFT analysis as the process of correlatjingith various
complex exponentials. Those correlations that lead to larger magnitude coefficients indicate frequencies where the
signal has larger components.

In some treatments, the DFT analysis and synthesis formulas differ slightly from those given above inlthat the
factor is moved from the analysis formula to the synthesis forfnolareplaced by a/+/N factor multiplying each
formula. All of these approaches are equally valid. The choice between them is largely a matter of taste. For example,
our approach is the only one for whici0] equals the average signal value. For the other approaches, the average is
S[0] multiplied by a known constant. The only cautionary note is that one should never use the analysis formula from
one version with the synthesis formula from another. In this course, we will always use the analysis and synthesis
formulas shown above.

Although we will always také, &y, 20y, . . ., (N — 1)@y as the analysis frequencies produced by the DFT, it is
important to point out that every frequengyin the upper half of this range, i.e. betweerand 2, is equivalent
to a frequencyo — 27, which lies between-7 and0. By “equivalent,” we mean that a complex exponential with
frequencyw with 7 < & < 27 equals the complex exponential with frequeficy 2. Thus, it is often useful to think
of frequencies in the upper half of our designated range as representing frequencies in therrtnge

For example, let us look at the DFT of a sinusoidal sigagt] = cos(25™n), with 0 < m < &. The DFT
coefficients,S[k], are given by

(S[0],...,S[N —1]) = (0,...,0,1/2,0,...,0,1/2,0,...,0), (4.30)

whereS[m] = S[N — m] = 1/2 andS[k] = 0 for otherk’s. In the synthesis formula, the coefficiefitin] multiplies
the complex exponential %", and the coefficiens[N — m] multiplies the complex exponential =¥

e~3*¥*n_Thus, these two coefficients can be viewed as multiplying exponentials at frequﬁr@g}éswhich by the
inverse Euler formula sum to yiekdn] = cos(25n).

N-point DFT

As with continuous-time signals, if a discrete-time sigsjad] is periodic with periodV, then it also periodic with
period2NV, and period N, and so on. Thus, when applying the DFT, we have a choice as to the valuessfmetimes
we choose it to be the the smallest period, i.e. the fundamental period, but sometimes we do not. When we want to
explicitly specify the value ofV used in a DFT, we will sayv-point DFT.

The relationship between thg-point and2 N-point DFT is just like the relationship between thesecond and
2T-second Fourier series. That is, whereasthipoint DFT has components at frequencies

0, &9, 200, ..., (N — 1)@ , (4.31)
the2N-point DFT has components at the frequencies

—~ —~

wo

0,800,230, ..., (2N — 1)3), = 0,7@0,...,(2]\7—1)%.. (4.32)
where 9
Goo— 2T _ Wo
Go = o = (4.33)

8The DSP Firsttextbook does this in Chapter 9.
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From this we see that the separation between frequency components has been halved. Moreover, it can be shown that
the relationship between the original and new coefficients is

S'k] = { g Wk/2), K even (4.34)

In summary, DFT analysis/synthesis can be performed over one fundamental period or over any number of fun-
damental periods. Usually, when the DFT is mentioned, the desired number of periods interval will be clear from
context. In any case, the spectrum is not affected by the choibe of

Aperiodic Discrete-Time Signals

Next, we briefly discuss how the DFT can also be applied when the siifialk not periodic. In this case, we can
nevertheless determine the spectrum of a fieéigmenof the signal, say from time; to timen., by performing DFT
analysis/synthesis on just this segment. That is, if we find DFT coefficients

1 o
S'k] = st[n]eﬂ%”, k=0,1,2,3,...,N—1 (4.35)
(N)
whereN = ny — nq, then we have

N,
sin] = Y S’k ", k=0,1,2,3,...,N 1. (4.36)
k=0

—

This will give us an idea of the frequency content of the signal during the given time interval. It is important to
emphasize, however, that the synthesis equation (4.36) isasmlycat timesn from n, to ny. Outside of this time
interval, the synthesis formula will not necessarily eqiia]. Instead, it describes a signal that is periodic with period
N, called theperiodic extensiownf the segment from to ns.

Approximating Fourier series coefficients with the DFT

Frequently, we are interested in finding the spectrum of some continuous-time signdlut for practical reasons,
we sample the signal and work with the resulting discrete-time sigindll. Can we find, at least approximately,
the spectrum of(t) by working with the discrete-time signaln|? As discussed below there is a close relationship
between the Fourier series coefficients@f) and the DFT of[n].

Supposes(t) is periodic with periodl’, and suppose we sampl&) with sampling intervall; = T'/N, whereN
is an integer, resulting in the discrete-time sigsal] = s(nT), which is easily seen to be periodic with peridd
Let a, denote thé-second Fourier coefficients sf¢), and letS[k] denote theV-point DFT of s[n]. Then it can be
shown that ifN is very large, then

ar =~ S[k], whenk << N (4.37)

Moreover, it can be shown that if it should happen &} has no spectral components at frequencies greater than
1/(2Ts), then

Sk, 0<k<N/2
ar={ SIN—k+1], —N/2<k<0 (4.38)
0, k| > N/2

The above two equation shows how the DFT can be used to compute, at least approximately, the Fourier series
coefficients. In fact, the Fourier series analysis program described in the inaheaB! section of this assignment
uses the DFT to compute the Fourier coefficients.
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Properties of the DFT coefficients

The following are a number of useful properties of the DFT with which you should be familiar. A few of these
will be useful in this lab assignment. Others will be used in future assignments. These properties are stated without
derivations. However, each can be derived straightforwardly from the analysis and synthesis formulas. Though not
required in this laboratory, you may want to confirm some of these properties using the DFT analysis and synthesis
programs described in Section 4.3.

1.

74

(DFT analysis) TheV-point DFT of a periodic signa$[n] with period N produces a vector aV DFT co-
efficients S[0],..., S[IV — 1], which are, in general, complex valued. Equivalently, the coefficients may be
considered to be determined by a sef\bignal samples.

(Frequency components)$fk] is N-point DFT of the periodic signal[r] with period N, then the frequency
or spectral component afn] at frequency?z® is S[k]e’*** ™. The component of the signal at frequerrei®:
is S[N — kje 75N,

. (DC component) The coefficieS{0] equals the average value or DC valuespf].

. (One-to-one relationship) There is a one-to-one relationship between discrete-time signals witiVdeqaw/-

alently, sequences df signal samples) and sequence\oDFT coefficients. Specifically, if[n] ands’[n]
are distinct periodic signals with periad, i.e. s[n] # s'[n] for some value of:, then theirN-point DFT
coefficients are not entirely identical, i.&]k] # S’[k] for at least oné:. It follows that one can recognize a
discrete-time periodic signal from its DFT coefficients (avil

. (Conjugate symmetry) [n] is a real-valued signal, i.e. its imaginary part is zero, then for any infeger

SIN—k = S*[k] (4.39)
ISIN — k]| = |S[K]] (4.40)
ZSIN—k] = —ZS[K]. (4.41)

These facts indicate that we are usually only interested in the first half of the DFT coefficients. In particular,
note that when we plot the DFT, the location of the origin and the appearance of the symmetry is different than
when we plot the Fourier Series. See Figure 4.2 for an example of the relation between the two.

. (Conjugate pairs) IB[k] is the N-point DFT of a real-valued signaln], then for anyk the sum of the com-

plex exponential components sfn| corresponding t&[k] and S[N — k] is a sinusoid at frequendsrk /N .
Specifically, using the inverse Euler relation,

S 21k - 2nk

S[k]e? FEm + SN — ke %" = 2|S[K]| cos(2lNkn + LS[K]) . (4.42)

. (Linear combinations) I§[n] ands’[n] have N-point DFT S[k] andS’[k], respectively, theas[n] + bs’[n] has

N-point DFT aS[k] + bS’[k].

. (Sampled continuous-time signals) If the discrete-time sigfidl comes from sampling a continuous-time

signals(t) with sampling interval, i.e. if sjn] = s(nT), then the continuous-time frequency represented by

DFT coefficientS[k] is %fs, wheref, = 1/T, samples per second is the sampling rate.

. (DFT of elementary signals) The following lists thepoint DFT of some elementary signals.
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4.2.3 Periodic Discrete-Time Signals — The Discrete Fourier Transform

(A) IC X[K]

Al M !

—5m0—4m0—3m0—2w0 Wy W, 2m0 Smo 4(.)0 5(.)0

N-5 N-4 N-3 N-2 N-1

w-——> k =——>

Figure 4.2: (A) The magnitude of the Fourier Series coefficientfor a periodic continuous-time signal. (B) The
DFT of a periodic discrete-time version of the same signal. Note that the origin for the Fourier Series coefficients is in
the middle of the plot, but the origin for the DFT is to the left.

(a) Complex exponential signalin] = =
(s[o,...,S[N -1]) =(0,...,0,1,0,...,0), (4.43)
where the nonzero coefficient$§m)|.
(b) Cosine:s[n] = cos (32n) =
(S[0],...,S[N — 1)) = (0,...,0,%,0,...,0,%,0,...,0) ) (4.44)

where the nonzero coefficients &én] andS[N — m).
(c) Sine:s[n] = sin (2%2n) =

(S[O],...,S[N—u):(o,...,o,—l,o,...,o,%,o,...,O), (4.45)

where the nonzero coefficients &én] andS[N — m).
(d) General sinusoick[n] = cos (Z&2n + ¢) =

1 . 1 _.
(s[0],...,S[N —1]) = (0,...,0, 5eW,O, ...,0, 5e—W,o,...,o) , (4.46)
where the nonzero coefficients &¥én] andS[N — m).

(e) Not quite periodic sinusoidi[n] = cos (%n) where(m + €) is non-integer = The resulting

S[k]’s will all be nonzerd, typically with small magnitudes except those corresponding to frequencies

closest toM

(f) Period contains unitimpulse periogln] = (1,0,...,0) —
1 1
(S[0],...,S[N —=1]) = (N""’N) . (4.47)

10. (V-point DFT) If S[k] is the N-point DFT of the periodic signai[n] with period N, then them N-point DFT
coefficients are _
S[k] = Slk/m], k= multiple ofm (4.48)
0, else

9This is the same effect that you saw in lab 3 when youfage over a non-integer number of periods of the sinusoid.
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11. (Parseval’s relation) I§[k] is the N-point DFT ofs[n], then

N-1

MS(a) = = S lstllP = Y IS (4.49)

(N) k=0
This shows that the power in the sigab] equals the energy of the DFT coefficients.

12. (Uncorrelatedness/orthogonality of complex exponentials)V+pmint correlation between complex exponen-
. . S 27T - 27l . . . . . . .
tial signalse’ "~ ™ ande? "~ ™, m # [, is zero. This property is used in the derivation of the previous one.

4.2.4 Separating Signals Based on Differing Harmonic Series

We've already suggested that there are many nearly-periodic signals that occur in the real world, with two notable
examples being many musical signals and vowels in speech signals. These sort of signals can be analyzed using the
Fourier Series or the DFT (applied to samples). We will use the DFT, principally because if we wanted to use the
Fourier series, we would anyway approximately compute the Fourier coefficients with the DFT. In particular, let us
consider a note played on a musical instrument like a flute or clarinet. Such a signal is nearly periodic with some
fundamental period. If the note is played at “concert pitch,” for instance, it has a fundamental frequency of 440 Hz and
a fundamental period af/440 seconds. Few musical signals, though, are purely sinusoidal. From our development
of the Fourier series, we know that a periodic signal can be described as a sum of complex exponentials (or sinusoids)
with harmonically-related frequencies. That is, the spectrum of our musical note is composearabaic seriesin

particular, if the fundamental frequency is 440 Hz, higher harmonics will be at 880 Hz, 1320 Hz, 1760 Hz, and so on.
Figure 4.3 shows a stemp plot of the DFT of an example harmonic series.

Suppose that we have two instruments playing different notes (i.e., the two signals have different fundamental
periods) at the same time. The signal coming from each instrument is a single harmonic series, but a listener “hears”
a signal which is the sum of these two signals. By the linear combination properties of the Fourier Series and DFT,
we know that the spectrum of the combined signal is simply the sum of the spectra of the separate signals. We can use
this property to separate the two signals in the frequency-domain, even though they overlap in the time-domain.

Suppose that we wish to simply remove one of the notes from the combined signal. We’'ll assume that we have
recorded and sampled the signal, so were working in discrete-time. We'll also assume that the combined signal is
also periodié® with some (fairly long) fundamental periall,. If we take theNy-point DFT of a segment of the
combined signal, we can identify the coefficients that make up each harmonic series. Then, we simply zero-out all of

101n the “real-world,” this is a somewhat questionable assumption. However, we can approximate this behavior quite well by simply using a long
DFT. In this case, each harmonic may be “spread” over several DFT coefficients, so to remove a harmonic we need to zero-out all of coefficients
associated with it. This spreading behavior is the same as what you saw in Lab 3 when fapaingver non-periodic signals.

ecccceeatocs leccces ecoe leccade doccosleoatecs
0 10 20 30 40 50 60 70
Coefficient Number. k

Figure 4.3: The DFT of a harmonic series. Note that only the first half of the DFT coefficients are shown in this figure.
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4.3 Some M\TLAB commands for this lab

the coefficients corresponding to the harmonics of the note we wish to remove. When we resynthesize the signal with
the inverse DFT, the resulting signal will contain only one of the two notes.

We can extend this procedure to more complicated signals, like melodies with many notes. In this case, we simply
analyze and resynthesize each note individually. Of course, with more simultaneously-sounding notes and more
complicated music, this procedure becomes rather difficult. In this lab, we will implement this procedure to remove a
“corrupting” note held throughout a simple, easily analyzed melody. Though somewhat idealized, the problem should
help to motivate the use of the DFT and the frequency domain.

4.3 SomeMATLAB commands for this lab

e Fourier Series Synthesis inlMATLAB: The functionfourier_synthesis is a function that we provide to
compute the approximafe-second Fourier series synthesis formula, equation (4.6). Its inputs are the’period
and a set o2 N + 1 Fourier coefficients. Its output is the synthesized signal. The calling command is

>> [ss,tt] = fourier_synthesis(CC, T, periods, Ns);

whereCCis a vector containing the Fourier coefficientsis the interval (in seconds) over which the Fourier
series is appliedperiods is the (integer) number of periods to include in the resynthpsispds  defaults

to a value of 1 if not provided. The optional paramédsrspecifies how many samples per period to include in
the output signal.

Itis assumed thaECcontains the coefficients_y ... ay. (IV is implicitly determined from the length @C)
Thus,CChas lengtl2 N + 1, theCC(n) element contains the Fourier series coefficient 1. Further, note
that thea coefficient falls alCC(N+1) .

The two returned parameters are the signal vesgoand the corresponding signal support vettor

e Fourier Series Analysis inMATLAB: The functionfourier_analysis is the complement to the function
fourier_synthesis . It performsT’-second Fourier series analysis on an input signal. The calling command
is

>> [CC,ww] = fourier_analysis(ss,T,N);

wheress is a vector containing the signal sampl€ss the intervall’ in seconds over which the Fourier series is
to be computed, anl is the number of positive harmonics to include in the analy&N+(l is the total number
of harmonics.) It is assumed thegt contains samples of the signal to be analyzed over the intgra].

The outputs are the vecto®C, which contains th& N + 1 Fourier coefficients, andww which contains the
frequencies (in Hertz) associated with each Fourier coefficient.

e DFT Analysis in MATLAB: In order to calculate aV-point DFT using MATLAB, we use thdft commanéd?.
The specific calling command is

>> XX = fft(xx)/length(xx);

l1Becausdourier _analysis is given only samples of the desired continuous-time signal, it cannot compute the Fourier coefficients exactly.
Rather it computes an approximation by using the DFT.

12FFT stands for théFast Fourier Transformwhich is a fast implementation of the DFT. Calculating the DFT from its definition requires
O(N?) computations, but the FFT only requiréy N log N). Additionally, the FFT is faster wheiV is equal to a power of two (i.elN =
256, 512, 1024, 2048, etc.).
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4.4

4.5

1.

This computes thé/-point DFT of the signal vectarx , whereNN is the length ofkx , and where the signal is
assumed to have supp@rtl, ..., N — 1. Since the M\TLAB commandft does notinclude the factday N in
the analysis formula, as in equation (4.29), we must divideehgth(xx)  to obtain theV DFT coefficients
XX

DFT Synthesis inMATLAB: The synthesis equation for the DFT is computed with the comriféind . If we
have computed the DFT using the above command, we must also remember to multiply the ré&ult by

>> xx = ifft(XX)*length(XX);

Note that theifft ~command will generally return complex values even when the synthesis should exactly
be real. However, the imaginary part should be negligible (i.e., lessithan0~—'*). You can eliminate this
imaginary part using theeal command.

Indexing the DFT: Since MATLAB begins its indexing from 1 rather than O, remember to use the following
rules for indexing the DFT:

X[0] = X@)

X[1] = X2

X[k] = X(k+1)
X[N —k] = X(N-k+1)
X[N—-1] = X(N)

Demonstrations in the Lab Section
Approximating signals as sums of sinusoids, as in Problem 1.
“Mapping out” this week’s background section
Relating the Fourier Series to the DFT
T-second Fourier Series and thepoint DFT
The DFT in MATLAB

Laboratory Assignment

(Building signals from sinusoids) In this problem, you will “hand tune” the amplitudes and phases of three

sinusoids so that their sum matches a “target” periodic signal as well as possible. The signals are considered to

be continuous-time. One could do this task analytically or numerically using the Fourier series analysis formula,
but we want you to gain the insight that results from doing it manually. A graphieals program has been
written to facilitate this procedure.

Download the filessinsum.m and sinsum.fig and executsinsum 3. MATLAB will bring up a GUI
window with three sinusoids (colored, dotted lines), the sum of these three sinusoids (the black, dashed line),
and a target periodic signal (the black, solid line). The frequencies of the sinusoids ats, and3wy, where
wp is the fundamental frequency of the target signal.

13Note that this function wilbnly work under MATLAB 6 and higher. It is highly recommend that you use a Windows-based PC for this problem,
since you need to copy the figure window into your report. Using the Windows clipboard simplifies this task significantly.
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4.5 Laboratory Assignment

As stated earlier, the goal of this problem is to adjust the amplitudes and phases of the three sinusoids to
approximate the target signal as closely as possible. You can enter the amplitude and phase for each sinusoid
in the spaces provide in the GUI window, or using the mouse, you can click-and-drag each sinusoid to change
its amplitude and phase. In addition to displaying the three sinusoids, their sum, and the target signal, the GUI
window also shows the mean-squared error between the sum and the target signals.

Usesinsum.m to hand tune the amplitudes and phases of the three sinusoids to make the mean-squared error
as small as you can.

(Hint: You should be able achieve an MSE less than 0.24. You will receive +2 bonus points if you can achieve
an MSE less than 0.231.)

(Hint: In attempting to minimize the MSE you might try to adjust one sinusoid to minimize the MSE, then
another, then another. After doing all three, go back and see if readjusting them in a “second round” has any
benefits.)

e [16(+2)] Include the resulting figure window in your report. (On Windows systems, use the “Copy to
Clipboard” button to copy the figure, then you can simply paste it into a Word or similar document. There
is also a “Print Figure” button for other systems if you can’t get access to a PC.)

Food for thought*: Did you try the procedure suggested in the hint above, in which you tune each sinusoid one
at a time and then return to each for a “second round” of tuning? If so, can you explain why the second round
did or did not lead to any improvements? (Hint: Consider Fourier series property 12.)

Food for thought: By executinginsum(1) , sinsum(2) ,andsinsum(3) ,you can match different signals
with sinusoids. Find MSE'’s that are as small as possible for each of these other signals.

2. (Applying Fourier series synthesis)
In this problem you will simply applyourier_synthesis to a given set of Fourier coefficients and find
the resulting continuous-time signal. Download the fiderier_synthesis.m . Use it to generate an
approximation to the signal with the following Fourier coefficients:
2
- _{ —(Z)" k==£1,£3,45,... (4.50)
0 k=0,+2,+4,...

LetT = 0.1 seconds, and generate 5 periods of the signal. WJse 20, giving you 41 Fourier series coef-
ficients. (Hint: First, define a frequency support vedtir-20:20 . Then, generat€Cfrom kk and set all
even harmonics to zero.)

e [4] Usestem to plot the magnitude of the Fourier coefficients. Use yduwector as the x-axis.

e [3] Useplot to plot samples of the continuous-time signal tfeatrier _synthesis returns versus
time in seconds.

e [2] What kind of signal is this?

3. (Applying Fourier series analysis) In this problem you will use the Fourier series analysis and synthesis formula
to see how the accuracy of the approximate synthesis formula (4.6) depeids on

Download the filedab4 data.mat  andfourier_analysis.m . lab4_data.mat  contains the vari-
ablesstep_signal  andstep_time , which are the signal and support vectors for the samples of a periodic
continuous-time signal with fundamental peridgl = 1 second. Note that there afg, = 16384 samples in

14“Food for thought” items are not required to be read or acted upon. There is no extra credit for involved. However, if you include something in
your report, your GSI will read and comment on it. Alternatively, you can discuss “food for thought topics” in office hours.
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one fundamental period.step_signal andstep_time include several fundamental periods, but you'll
be dealing with only one period in several parts of this problem. As such, you might find it useful to create a
one-period version aftep_signal  .)

(a) (Look at the signal to be analyzed) First, let us examtep_signal

e [3] Useplot to plotstep_signal  versus its support vector.
e [3] Compute the mean-squared valuestdp_signal

(b) (Perform FS analysis) Udeurier_analysis to perform aly second Fourier series analysis oaer
single periodof step_signal  with with N = 50.

e [4] Usesubplot andstem to plot the magnitude and phase of the resulting Fourier series coeffi-
cients. Make sure that your x-axis is given in frequency.

(c) (Resynthesize FS approximations) Userier_analysis andfourier_synthesis to generate
an approximations o$tep_signal with N = 25, 50, 100, and 200. (Perforffi-second Fourier
analysis and synthesis over a single period of the signal for Badde sure to resynthesize a single period
with Ns = 16384 samples.)

e [4] Useplot andsubplot to plot your resynthesized signals for eahin separate panels of a
subplot array.

e [3] Calculate the mean-squared error of the resynthesis for each vaNie of

e [3] Compute the sum of the squared magnitudeSGfor each value ofV.

e [3] Find and document a relationship between the mean-squared errors and the sum of squared mag-
nitudes of CCyou have computed. (Hint: Consider the mean-squared value that you computed for
step_signal . You might also want to look in the Properties of Fourier Coefficients subsection.)

(d) (Meet an MSE target) Find the smallest value\ofor which the mean-squared error of the resynthesis is
less than 0.5% of the mean-squared valustep_signal

e [4] Include this value in your report.

Food for thought: Try repeating Part (b) with the Fourier analysis performed over two fundamental periods of
the signal, and compare to the previous answer to Part (b). Do the new Fourier coefficients turn out as expected?

4. (Using the DFT to describe a signal as a sum of discrete-time sinusoids) In this problem, you will simply
apply the DFT to a particular discrete-time signal, which is also containéabih data.mat , namely,
signal_id . signal_id is considered to be a periodic discrete-time signal with fundamental pafjcd
128 = length(signal_id) . Take theNy-point DFT ofsignal_id

e [3] Usestem to plot the magnitude of the DFT versus the DFT coefficient index,

e [12] Use the DFT to describgignal_id  as a sum of discrete-time sinusoids. That is, for each sinusoid,
give the amplitude, frequency (in radians per sample), and phase.

5. (Use the DFT to remove undesired components from a signal) In this problem you will use the technique
described in Section 4.2.4 to eliminate a noise signal from a desired signal. This sigradly , is also
contained inlab4_data.mat . This variable contains samples of a continuous-time signal sampled at rate
fs = 8192 samples/second. It contains a simple melody with one note every 1/2 second. Unfortunately, this
melody is corrupted by another “instrument” playing a constant note throughout. We would like to remove this
second instrument from the signal, and we will use the DFT to do so.

Itis a good idea to begin by listening teelody using thesoundsc command.
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(a) (Examine DFT of first note) In order to remove the corrupting instrument, we need to determine where it
lies in the frequency domain. Let's begin by looking at just the first note (i.e the first 0.5 seconds or 4096
samples). This “note” consists of the sum of two notes — one is the first note of the melody, the other is
the constant note from the corrupting instrument. Each of these notes has components forming a harmonic
series. The fundamental frequencies of these harmonic series are different, which is the key to our being
able to remove the corrupting note. Take the DFT of the first 0.5 seconds (4096 samples) of the signal.

e [3] Usestem to plot the magnitude of the DFT for the first note.

e [3] Identify the frequencies contained in each of the two harmonic series present in signal. What are
the fundamental frequencies?

(b) (Examine DFT of second note) By comparing the spectra of the first two notes, we can identify the cor-
rupting instrument. Take the DFT of the second 0.5 seconds (samples 4097 through 8192).

e [3] Usestem to plot the magnitude of the DFT for the second 0.5 seconds.
e [2] What are the fundamental frequencies (in Hz) of the two harmonic series in this note?

e [2] We know that the melody changes from the first note to the second, but the corrupting instrument
does not. Thus, by comparing the harmonic series found in this and the previous part, identify which
fundamental frequency belongs to the melody and which to the corrupting instrument.

(c) (Identify the DFT coefficients of the corrupting signal) In order to remove the “corrupting” instrument, we
simply need to zero-out the coefficients corresponding to the harmonics of the note from the corrupting
instrument. This is done directly on the DFT coefficients of each 0.5 seconds of the signal. Then, we
resynthesize the signal from the modified DFT coefficients.

e [4] Based on this, and your results from the previous parts of this problem, which DFT coefficients
need to be set to zero in order to remove the corrupting instrument from this signal? (Hint: Remember
the conjugate pairs.)

(d) (Complete the function that removes the corrupting instrument) Finally, we'd like to remove the corrupting
instrument from our melody. Download the fiig_melody.m . This function contains the code that
you'll use to remove the corrupting instrument from the melody signal. For each note of the melody, the
function takes the DFT, zeros out the appropriate coefficients (which you must provide), and resynthesizes
the signal.

e [4] Complete the function by setting the varialzle equal to a vector containing the DFT coefficients
that must be zeroed-out.
¢ [1] Execute the function using the command
>> result = fix_melody(melody);
Listen to the resulting signal. Have you successfully removed the corrupting instrument?
(e) (Check your result with the spectrogram) Finally, we'd like to be able to visually check our result. Down-
load the functioomelody _check.m . melody_check produces an image calledspectrogranthat
you can use to check your work. Basically, the spectrogram works by taking the DFT of many short seg-
ments of a signal and arranging them as the columns of an image. Note that the x-axis is time and the
y-axis is frequency. The color of each point on the image represents the strength of the spectral compo-
nent (in decibels) at that time and frequency. The dark horizontal bands show the presence of sinusoidal
components in the signal at the associated times.
e [4] Executemelody_check by passing itmelody . Include the resulting figure in your report.
e [1] Can you identify the components of the corrupting instrument on this spectrogram?
¢ [4] Now, executamelody_check by passingitesult . Include the resulting figure in your report.
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e [2] Compare the spectrogram ofelody to the spectrogram aksult . What differences do you
see? Is this what you expect to see?

6. On the front page of your report, please provide an estimate of the average amount of time spent outside of lab
by each member of the group.
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