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Laboratory 4

Fourier Series and the DFT

4.1 Introduction

As emphasized in the previous lab, sinusoids are an important part of signal analysis. We noted that many signals
that occur in the real world are composed of sinusoids. For example, many musical signals can be approximately
described as sums of sinusoids, as can some speech sounds (vowels in particular). It turns out that any periodic signal
can be written exactly as a sum of amplitude-scaled and phase-shifted sinusoids. Equivalently, we can use Euler’s
inverse formulas to write periodic signals as sums of complex exponentials. This is a mathematically more convenient
description, and the one that we will adopt in this laboratory and, indeed, in the rest of this course. The description of
a signal as a sum of sinusoids or complex exponentials is known as thespectrumof the signal.

Why do we need another representation for a signal? Isn’t the usualtime-domainrepresentation enough? It turns
out that spectral (orfrequency-domain) representations of signals have many important properties. First, a frequency-
domain representation may be simpler than a time-domain representation, especially in cases where we cannot write an
analytic expression for the signal. Second, a frequency-domain representation of a signal can often tell us things about
the signal that we would not know from just the time-domain signal. Third, a signal’s spectrum provides a simple way
to describe the effect of certain systems (likefilters) on that signal. There are many more uses for frequency-domain
representations of a signal, and we will examine many of them throughout this course. Spectral representations are
one of the most central ideas in signals and systems theory, and can also be one of the trickiest to understand.

Consider the following problem. Suppose that we have a signal that is actually the sum of two different signals.
Further, suppose that we would like to separate one signal from the other, but the signals overlap in time. If the signals
have frequency-domain representations that do not overlap, it is still possible to separate the two signals. In this way,
we can see that frequency-domain representations provide another “dimension” to our understanding of signals.

In this laboratory, we will examine two tools that allow us to use spectral representations. TheFourier Seriesis
a tool that we use to work with spectral representations of periodic continuous-time signals. TheDiscrete Fourier
Transform(DFT) is an analogous tool for periodic discrete-time signals. Each of these tools allow bothanalysis(the
determination of the spectrum of the time-domain signal) andsynthesis(the reconstruction of the time-domain signal
from its spectrum). Though you may not be aware of it, you have already performed DFT analysis; the “frequency,
amplitude, and phase estimator” system that you implemented in Laboratory 3 actually performs DFT analysis.

4.1.1 “The Questions”

• How can we determine the spectral content of signals?

• How can we separate signals that overlap in time?
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Figure 4.1: (A) A time-domain representation of a signal. (B) A frequency-domain representation of the same signal
produced with the Fourier Series.

4.2 Background

4.2.1 Frequency-domain representations

This section provides an overview to the Fourier series approach of the frequency-domain representation of continuous-
time signals.

So far, we have typically thought of signals as time-varying quantities, likes(t). When we plot these signals, we
generally place time along the horizontal axis and signal value along the vertical axis. The idea behind the frequency-
domain representation of a signal is similar. Rather than plotting signal value versus time, we plot a spectral value
versusfrequency. Doing this involves atransformationof the signal. Figure 4.1 shows an example of a time-domain
and frequency-domain representation of a signal. Note that we can think of the result of the transform as a signal as
well, a signal whose independent variable is frequency rather than time.

The frequency domain representation of a signal (i.e., itsspectrum) is easy to construct when the signal is composed
of a sum of simple complex exponential signals. In this case, the spectrum consists of a few isolatedspectral lines
(“spikes”) on the frequency axisat the frequencies of those complex exponentials. These spectral lines are complex-
valued, and their magnitudes and angles equal the amplitudes and phases of the corresponding complex exponentials.
Alternatively, we may draw two separate spectral line plots — one showing the magnitude and the other showing their
angles.

If we add more complex exponentials to our signal, then we simply add more spectral lines to its frequency-domain
representation. Eventually, if we add enough complex exponentials (possibly an infinite number), we can createany
signal that we might want. This includes signals that do not look very sinusoidal, like square waves and sawtooth
waves. We will use this result for periodic signals in this laboratory assignment.

4.2.2 Periodic Continuous-Time Signals — The Fourier Series

Suppose that we have a periodic continuous-time signals(t) with periodT seconds. We have claimed thatanysuch
signal can be represented as a sum of complex exponential signals. We now assert that these complex exponentials
have harmonically related frequencies. Specifically, their frequencies (in radians per second) form aharmonic series

. . . ,−3ω0,−2ω0,−ω0, 0, ω0, 2ω0, 3ω0, . . . , (4.1)

where

ω0 =
2π

T
(4.2)

is thefundamental frequency. The frequencykω0, k ≥ 2, is called thek-th harmonicof the fundamental frequency,
or thek-th harmonic frequency for short.
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4.2.2 Periodic Continuous-Time Signals — The Fourier Series

Next we assert that the representation ofs(t) in terms of complex exponentials with these frequencies is given by
theFourier Series synthesis formula1:

s(t) = . . . α−2e
j
2π(−2)
T t + α−1e

j
2π(−1)
T t + α0e

j 2π0T t + α1e
j 2π1T t + α2e

j 2π2T t + . . .

=

∞∑
k=−∞

αke
j 2πkT t , (4.3)

where theαk ’s, which are calledFourier coefficients. The Fourier coefficients are determined by theFourier series
analysis formula

αk =
1

T

∫
〈T0〉
s(t)e−j

2πk
T tdt , (4.4)

where
∫
〈T 〉 indicates an integral over anyT second interval2. In other words, the Fourier synthesis formula shows that

the complex exponential component ofs(t) at frequency2πk
T

is

αke
j 2πkT t . (4.5)

Similarly, the Fourier analysis formula shows how the complex exponential components can be determined froms(t),
even when no exponential components are evident.

In general, the Fourier coefficients, i.e. theαk ’s, are complex. Thus, they have a magnitude|αk| and a phase
or angle\αk. The magnitude|αk| can be viewed as the strength of the exponential component at frequencykω0 =
2πk/T , while the angle\αk gives the phase of that component. The coefficientα0 is theDC term; it measures the
average value of the signal over one period.

Once we know theαk ’s, the spectrum ofs(t) is simply a plot consisting of spectral lines at frequencies

. . . ,−2ω0,−ω0, 0, ω0, 2ω0, . . . .

The spectral line at frequencykω0 is drawn with height indicating the magnitude|αk| and is labeled with the complex
value ofαk. Alternatively, two separate spectral line plots can be drawn — one showing the|αk|’s and the other
showing the\αk ’s.

Notice that the Fourier synthesis formula is very similar to the formula given in Lab 3 for the correlation between
a sinusoid and a complex exponential. Indeed it has the same interpretation: in computingαk we are computing the
correlation3 between the signals(t) and a complex exponential with frequency2πk/T . Thought of another way, this
correlation gives us an indication ofhow muchof a particular complex exponential is contained in the signals(t).

Partial Series

Notice the infinite limits of summation in the synthesis formula (4.3). This tells us that, for the general case, we need
an infinite number of complex exponentials to represent our signal. However, in practical situations, such as in this
lab assignment, when we use the synthesis formula to determine signal values, we can generally only include a finite
number of terms in the sum. For example, if we use only the firstN positive and negative frequencies plus the DC
term (atk = 0), our approximate synthesis equation becomes

s(t) ≈
N∑

k=−N

αke
j 2πkT t . (4.6)

1This is theexponential formof the Fourier series synthesis formula. There is also asinusoidal form, which is presented later in this section.
2Becauses(t)e−j

2πk
T
t is periodic with periodT , this integral evaluates to the same value for any interval of lengthT .

3Actually, here we are computing what we called thelength-normalized correlation.
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Fortunately, Fourier series theory shows that this approximation becomes better and better4 asN −→ ∞. Alterna-
tively, it is known that the mean-squared value of the difference betweens(t) and the approximation tends to zero as
N −→∞. Specifically, it can be shown that

MS

(
s(t)−

N∑
k=−N

αke
j 2πkT t

)
= MS(s(t))−

N∑
k=−N

|αk|
2

−→ 0 asN −→∞ . (4.7)

How large mustN be for the approximation to be good? There is no simple answer. However, you will gain some
idea by the experiments you perform in this lab assignment.

T -Second Fourier Series

If a signals(t) is periodic with periodT , then it is also periodic with period2T , and period3T , and so on. Thus when
applying Fourier series, we have a choice as to the value ofT . Often, we will chooseT to be the smallest period,
i.e. thefundamental periodof s(t). However, there are also situations where we will not. For example, suppose we
wish to perform spectral analysis/synthesis of two or more periodic signals that have different fundamental periods.
We could of course form a separate Fourier series for each signal. In this case, each Fourier series will be based on
a different harmonic series of frequencies. Wouldn’t it be nicer if we could base each series on a common harmonic
series of frequencies? We can do this by choosingT to be a multiple of the fundamental periods of both signals.

When we want to explicitly specify the value ofT that is used in a Fourier series, we will sayT -second Fourier
series. What then is the relationship between Fourier series corresponding to different values ofT? To see what is
happening, let us compare aT -second Fourier series to a2T -second Fourier series. TheT -second Fourier series has
components at the frequencies

. . . ,−2ω0,−ω0, 0, ω0, 2ω0, . . . , (4.8)

where

ω0 =
2π

T
(4.9)

and the2T -second Fourier series has components at the frequencies.

. . . ,−2ω′0,−ω
′
0, 0, ω

′
0, 2ω

′
0, . . . = . . . ,−ω0,−

ω0

2
, 0,
ω0

2
, ω0, . . . , (4.10)

where

ω′0 =
2π

2T
=
ω0

2
. (4.11)

From this we see that the2T -second Fourier series decomposess(t) into frequency components with half the sepa-
ration of that of theT -second Fourier series. However, sinces(t) is periodic with periodT , its spectrum is actually
concentrated at frequencies that are multiples ofω0 (or a subset thereof). Hence, the “additional” coefficients in the
2T -Fourier series must be zero, and it turns out that the nonzero coefficients are the same as for theT -second Fourier
series. Specifically, it can be shown that withαk andα′k denoting theT -second and2T -second Fourier coefficients,
respectively, then

α′k =

{
αk/2, k even
0, k odd

(4.12)

In summary, Fourier series analysis/synthesis can be performed over one fundamental period or over any number
of fundamental periods. Usually, when Fourier series is mentioned, the desired number of periods interval will be
clear from context. In any case, the spectrum is not affected by the choice ofT .

4It is known that under rather benign assumptions about the signals(t), the approximation converges tos(t) asN −→ ∞ at all timest where
s(t) is continuous, and at timest wheres(t) has a jump discontinuity, the approximation converges to the average of the values immediately to the
left and right of the discontinuity.
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4.2.2 Periodic Continuous-Time Signals — The Fourier Series

Aperiodic Continuous-Time Signals

Next, we briefly discuss how Fourier series can also be applied when the signals(t) is not periodic. In this case, we
can nevertheless determine the spectrum of a finitesegmentof the signal, say from timet1 to timet2, by performing
Fourier series analysis/synthesis on just this segment. That is, if we find Fourier coefficients

αk =
1

T

∫ t2
t1

s(t)e−j
2πk
T tdt , (4.13)

whereT = t2 − t1, then we have

s(t) =
∞∑

k=−∞

αke
j 2πkT t , for t1 ≤ t ≤ t2 . (4.14)

This will give us an idea of the frequency content of the signal during the given time interval. It is important to
emphasize, however, that the synthesis equation (4.14) is validonly whent is betweent1 andt2. Outside of this time
interval, the synthesis formula will not necessarily equals(t). Instead, it describes a signal that is periodic with period
T , called theperiodic extensionof the segment betweent1 andt2.

Properties of the Fourier Coefficients

We conclude our discussion of the Fourier series with a list of useful properties, some of which have already been
mentioned. A few of these will be useful in this lab assignment. The rest are included for completeness. These prop-
erties are stated without derivations. However, each can be derived straightforwardly from the analysis and synthesis
formulas. Though not required in this laboratory, you may want to confirm some of these properties using the Fourier
analysis and synthesis programs described in Section 4.3.

1. (Fourier series analysis) TheT -second Fourier series analysis of a periodic signals(t) with periodT produces
a set of Fourier coefficientsαk, k = . . . ,−2,−1, 0, 0, 1, 2, . . ., which are, in general, complex valued.

2. (Frequency components) Ifαk are the coefficients of theT -second Fourier series of the periodic signals(t)with
periodT , then the frequency or spectral component ofs(t) at frequency2πk

T
is αkej

2πk
T t.

3. (DC component) The coefficientα0 equals the average or DC value ofs(t).

4. (One-to-one relationship) There is a one-to-one relationship between periodic signals and Fourier coefficients.
Specifically, ifs(t) ands′(t) are distinct5 periodic signals, each periodic with periodT , then theirT -second
Fourier coefficients are not entirely identical, i.e.αk 6= α′k for at least onek. It follows that one can recognize
a periodic signal from its Fourier coefficients (and its period).

5. (Conjugate symmetry) Ifs(t) is a real-valued signal, i.e. its imaginary part is zero, then for any integerk

α−k = α∗k (4.15)

|α−k| = |αk| (4.16)

\α−k = −\αk . (4.17)

5By “distinct”, we mean thats(t) ands′(t) are sufficiently different thats(t) 6= s′(t) for all timest in some interval with(t1, t2), with nonzero
length. They arenot “distinct” if they differ only at a set of isolated points. To see why we need this clarification, observe that ifs(t) ands′(t)
differ only at timet1, then they have the same Fourier coefficients, because integrals, such as those defining Fourier coefficients, are not affected by
changes to their integrands at isolated points. Likewise,s(t) ands′(t) will have the same Fourier coefficients if they differ only at isolated times
t1, t2, . . .. However, ifs(t) 6= s′(t) for all t in an entire interval, no matter how small, thenαk 6= α′k for at least onek.
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6. (Conjugate pairs) Ifαk ’s are theT -second Fourier coefficients for a real-valued signals(t), then for anyk the
sum of the complex exponential components ofs(t) corresponding toαk andα−k is a sinusoid at frequency
2πk/T . Specifically, using the inverse Euler relation,

αke
j 2πkT t + α−ke

−j 2πkT t = 2|αk| cos(
2πk

T
t+ \αk) . (4.18)

7. (Sinusoidal form of the Fourier synthesis formula) The previous property leads to the sinusoidal form of the
Fourier synthesis formula:

s(t) = α0 +

∞∑
k=−∞

2|αk| cos(
2πk

T
t+ \αk) . (4.19)

8. (Linear combinations) Ifs(t) ands′(t) haveT -second Fourier coefficientsαk andα′k, respectively, thenas(t)+
bs′(t) hasT -second Fourier coefficientsaαk + bα′k.

9. (Fourier series of elementary signals) The following lists theT -second Fourier coefficients of some elementary
signals.

(a) Complex exponential signal:s(t) = ej
2πm
T t =⇒

αk =

{
1, k = m
0, k 6= m

. (4.20)

(b) Cosine:s(t) = cos(2πmT t) =⇒

αk =

{
1
2 , k = ±m
0, k 6= ±m

. (4.21)

(c) Sine:s(t) = sin(2πmT t) =⇒

αk =


− j2 , k = m
j
2 , k = −m
0, k 6= ±m

. (4.22)

(d) General sinusoid:s(t) = cos(2πmT t+ φ) =⇒

αk =


1
2e
jφ, k = m

1
2e
−jφ, k = −m

0, k 6= ±m
. (4.23)

10. (T -second Fourier series) If a periodic signals(t) has periodT andT -second Fourier coefficientsαk, then the
nT -second Fourier coefficients are

α′k =

{
αk/n, k = multiple ofn
0, else

(4.24)

11. (Parseval’s relation) Ifαk ’s are theT -second Fourier coefficients for signals(t), then the mean-squared value
of s(t), equivalently the power, equals the sum of the squared magnitudes of the Fourier coefficients. That is,

MS(s) =
1

T

∫
〈T 〉
|s(t)|2 dt =

∞∑
k=−∞

|αk|
2 (4.25)

12. (Uncorrelatedness/orthogonality of complex exponentials) TheT -second correlation between complex expo-
nential signalsej

2πm
T t andej

2πn
T t, m 6= n, is zero. This property is used in the derivation of the previous and

other properties.
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4.2.3 Periodic Discrete-Time Signals — The Discrete Fourier Transform

This section overview the discrete Fourier transform approach to the frequency-domain representation of discrete-time
signals.

Consider a periodic discrete-time signals[n] with periodN . As with continuous-time signals, we wish to find
its frequency-domain representation, i.e. its spectrum. That is, we wish to represents[n] as a sum ofdiscrete-time
complex exponential signals. Again, by analogy to the continuous-time case we will use frequencies that are multiples
of

ω̂0 =
2π

N
. (4.26)

However, unlike the continuous-time case, we now use only a finite number of such frequencies. Specifically, we use
theN harmonically related frequencies:

0, ω̂0, 2ω̂0, . . . , (N − 1)ω̂0 . (4.27)

The reason is that any complex exponential signal with the frequencykω̂0 is in fact identical to a complex exponential
signal with one of theN frequencies listed above6. Notice that this set of frequencies ranges from0 to 2π(N−1)

N
, which

is just a little less than2π.
We now assert that the representation ofs[n] in terms of complex exponentials with the above frequencies is given

by thediscrete-time Fourier series synthesis formulaor as we will usually call it, thethe Discrete Fourier Transform
(DFT) synthesis formula

s[n] = S[0]ej
2π0
N n + S[1]ej

2π1
N n + S[2]ej

2π2
N n + . . .+ S[N − 1]ej

2π(N−1)
N n

=

N−1∑
k=0

S[k]ej
2πk
N n , (4.28)

where theS[k]’s, which are calledDFT coefficients, are determined by theDFT analysis formula

S[k] =
1

N

∑
〈N〉

s[n]e−j
2πk
N n , k = 0, 1, 2, 3, . . . , N − 1 (4.29)

where〈N〉 indicates a sum over anyN consecutive integers7, e.g. the sum over0, . . . , N .
As with the continuous-time Fourier series, the DFT coefficients are, in general, complex. Thus, they have a

magnitude|S[k]| and a phase or angle\S[k]. The magnitude|S[k]| can be viewed as the strength of the exponential
component at frequencykω̂0 = 2πk/N , while\S[k] is the phase of that component. The coefficientS[0] is theDC
term; it measures the average value of the signal over one period.

Once we know theS[k]’s, the spectrum ofs[n] is simply a plot consisting of spectral lines at frequencies

0, ω̂0, 2ω̂0, . . . , (N − 1)ω̂0.

The spectral line at frequencykω̂0 is drawn with height indicating the magnitude|S[k]| and is labeled with the complex
value ofS[k]. Alternatively, two separate spectral line plots can be drawn — one showing the|S[k]|’s and the other
showing the\S[k]’s.

Since the sums in the synthesis and analysis formulas are finite, there are no convergence-of-partial-sum issues,
such as those that arise for the continuous-time Fourier series.

6If kω̂0 is not in this range, thenk = mN + l wherem 6= 0 and0 ≤ l < N . It then follows that the complex exponential with this frequency

is ej
2πk
N
n = ej

2π(mN+l)
N

n = ej2πmnej
2πl
N
n = ej

2πl
N
n, which is an exponential with one of theN frequencies in the list above.

7Becauses[n]e−j
2πk
N
n is periodic with periodN , the sum is the same for any choice ofN consecutive integers.
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Often the DFT coefficientsS[0], . . . , S[N ] are said to be the “DFT of the signals[n]” and the process of com-
puting them via the analysis equation (4.29) is called “taking the DFT” ofs[n]. Conversely, applying the synthesis
equation (4.28) is often called “taking the inverse DFT” ofS[0], . . . , S[N ].

Notice that the DFT analysis formula (4.29) is identical to equation (3.45) in Lab 3. That is, in computing the set
of correlations between a signals[n] and the various complex exponentials in Lab 3, we were actually taking the DFT
of s[n]. Indeed, it continues to be helpful to view the DFT analysis as the process of correlatings[n] with various
complex exponentials. Those correlations that lead to larger magnitude coefficients indicate frequencies where the
signal has larger components.

In some treatments, the DFT analysis and synthesis formulas differ slightly from those given above in that the1/N
factor is moved from the analysis formula to the synthesis formula8, or replaced by a1/

√
N factor multiplying each

formula. All of these approaches are equally valid. The choice between them is largely a matter of taste. For example,
our approach is the only one for whichS[0] equals the average signal value. For the other approaches, the average is
S[0]multiplied by a known constant. The only cautionary note is that one should never use the analysis formula from
one version with the synthesis formula from another. In this course, we will always use the analysis and synthesis
formulas shown above.

Although we will always take0, ω̂0, 2ω̂0, . . . , (N − 1)ω̂0 as the analysis frequencies produced by the DFT, it is
important to point out that every frequencŷω in the upper half of this range, i.e. betweenπ and2π, is equivalent
to a frequencŷω − 2π, which lies between−π and0. By “equivalent,” we mean that a complex exponential with
frequencŷω with π < ω̂ < 2π equals the complex exponential with frequencyω̂− 2π. Thus, it is often useful to think
of frequencies in the upper half of our designated range as representing frequencies in the range−π to 0.

For example, let us look at the DFT of a sinusoidal signal,s[n] = cos(2πmN n), with 0 < m < N
2 . The DFT

coefficients,S[k], are given by

(S[0], . . . , S[N − 1]) = (0, . . . , 0, 1/2, 0, . . . , 0, 1/2, 0, . . . , 0), (4.30)

whereS[m] = S[N −m] = 1/2 andS[k] = 0 for otherk’s. In the synthesis formula, the coefficientS[m] multiplies

the complex exponentialej
2πm
N n, and the coefficientS[N − m] multiplies the complex exponentialej

2π(N−m)
N n =

e−j
2πm
N n. Thus, these two coefficients can be viewed as multiplying exponentials at frequencies± 2πmN , which by the

inverse Euler formula sum to yields[n] = cos(2πm
N
n).

N -point DFT

As with continuous-time signals, if a discrete-time signals[n] is periodic with periodN , then it also periodic with
period2N , and period3N , and so on. Thus, when applying the DFT, we have a choice as to the value ofN . Sometimes
we choose it to be the the smallest period, i.e. the fundamental period, but sometimes we do not. When we want to
explicitly specify the value ofN used in a DFT, we will sayN -point DFT.

The relationship between theN -point and2N -point DFT is just like the relationship between theT -second and
2T -second Fourier series. That is, whereas theN -point DFT has components at frequencies

0, ω̂0, 2ω̂0, . . . , (N − 1)ω̂0 , (4.31)

the2N -point DFT has components at the frequencies

0, ω̂′0, 2ω̂
′
0, . . . , (2N − 1)ω̂

′
0 = 0,

ω̂0

2
, ω̂0, . . . , (2N − 1)

ω̂0

2
. . (4.32)

where

ω̂0 =
2π

2N
=
ω0

2
(4.33)

8TheDSP Firsttextbook does this in Chapter 9.
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From this we see that the separation between frequency components has been halved. Moreover, it can be shown that
the relationship between the original and new coefficients is

S′[k] =

{
S[k/2], k even
0, k odd

(4.34)

In summary, DFT analysis/synthesis can be performed over one fundamental period or over any number of fun-
damental periods. Usually, when the DFT is mentioned, the desired number of periods interval will be clear from
context. In any case, the spectrum is not affected by the choice ofN .

Aperiodic Discrete-Time Signals

Next, we briefly discuss how the DFT can also be applied when the signals[n] is not periodic. In this case, we can
nevertheless determine the spectrum of a finitesegmentof the signal, say from timen1 to timen2, by performing DFT
analysis/synthesis on just this segment. That is, if we find DFT coefficients

S′[k] =
1

N

∑
〈N〉

s[n]e−j
2πk
N n , k = 0, 1, 2, 3, . . . , N − 1 (4.35)

whereN = n2 − n1, then we have

s[n] =

N−1∑
k=0

S′[k]ej
2πk
N n , k = 0, 1, 2, 3, . . . , N − 1 . (4.36)

This will give us an idea of the frequency content of the signal during the given time interval. It is important to
emphasize, however, that the synthesis equation (4.36) is validonly at timesn from n1 to n2. Outside of this time
interval, the synthesis formula will not necessarily equals[n]. Instead, it describes a signal that is periodic with period
N , called theperiodic extensionof the segment fromn1 to n2.

Approximating Fourier series coefficients with the DFT

Frequently, we are interested in finding the spectrum of some continuous-time signals(t), but for practical reasons,
we sample the signal and work with the resulting discrete-time signals[n]]. Can we find, at least approximately,
the spectrum ofs(t) by working with the discrete-time signals[n]? As discussed below there is a close relationship
between the Fourier series coefficients ofs(t) and the DFT ofs[n].

Supposes(t) is periodic with periodT , and suppose we samples(t) with sampling intervalTs = T/N , whereN
is an integer, resulting in the discrete-time signals[n] = s(nTs), which is easily seen to be periodic with periodN .
Let αk denote theT -second Fourier coefficients ofs(t), and letS[k] denote theN -point DFT ofs[n]. Then it can be
shown that ifN is very large, then

αk ≈ S[k] , whenk << N (4.37)

Moreover, it can be shown that if it should happen thats(t) has no spectral components at frequencies greater than
1/(2Ts), then

αk =


S[k], 0 ≤ k ≤ N/2
S[N − k + 1], −N/2 ≤ k < 0
0, |k| > N/2

(4.38)

The above two equation shows how the DFT can be used to compute, at least approximately, the Fourier series
coefficients. In fact, the Fourier series analysis program described in the in the MATLAB section of this assignment
uses the DFT to compute the Fourier coefficients.
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Properties of the DFT coefficients

The following are a number of useful properties of the DFT with which you should be familiar. A few of these
will be useful in this lab assignment. Others will be used in future assignments. These properties are stated without
derivations. However, each can be derived straightforwardly from the analysis and synthesis formulas. Though not
required in this laboratory, you may want to confirm some of these properties using the DFT analysis and synthesis
programs described in Section 4.3.

1. (DFT analysis) TheN -point DFT of a periodic signals[n] with periodN produces a vector ofN DFT co-
efficientsS[0], . . . , S[N − 1], which are, in general, complex valued. Equivalently, the coefficients may be
considered to be determined by a set ofN signal samples.

2. (Frequency components) IfS[k] isN -point DFT of the periodic signals[n] with periodN , then the frequency
or spectral component ofs[n] at frequency2πkN is S[k]ej

2πk
N n. The component of the signal at frequency−2πkN

is S[N − k]e−j
2πk
N N .

3. (DC component) The coefficientS[0] equals the average value or DC value ofs[n].

4. (One-to-one relationship) There is a one-to-one relationship between discrete-time signals with periodN (equiv-
alently, sequences ofN signal samples) and sequences ofN DFT coefficients. Specifically, ifs[n] ands′[n]
are distinct periodic signals with periodN , i.e. s[n] 6= s′[n] for some value ofn, then theirN -point DFT
coefficients are not entirely identical, i.e.S[k] 6= S′[k] for at least onek. It follows that one can recognize a
discrete-time periodic signal from its DFT coefficients (andN ).

5. (Conjugate symmetry) Ifs[n] is a real-valued signal, i.e. its imaginary part is zero, then for any integerk

S[N − k] = S∗[k] (4.39)

|S[N − k]| = |S[k]| (4.40)

\S[N − k] = −\S[k] . (4.41)

These facts indicate that we are usually only interested in the first half of the DFT coefficients. In particular,
note that when we plot the DFT, the location of the origin and the appearance of the symmetry is different than
when we plot the Fourier Series. See Figure 4.2 for an example of the relation between the two.

6. (Conjugate pairs) IfS[k] is theN -point DFT of a real-valued signals[n], then for anyk the sum of the com-
plex exponential components ofs[n] corresponding toS[k] andS[N − k] is a sinusoid at frequency2πk/N .
Specifically, using the inverse Euler relation,

S[k]ej
2πk
N n + S[N − k]e−j

2πk
N n = 2|S[k]| cos(

2πk

N
n+ \S[k]) . (4.42)

7. (Linear combinations) Ifs[n] ands′[n] haveN -point DFTS[k] andS′[k], respectively, thenas[n] + bs′[n] has
N -point DFTaS[k] + bS′[k].

8. (Sampled continuous-time signals) If the discrete-time signals[n] comes from sampling a continuous-time
signals(t) with sampling intervalTs, i.e. if s[n] = s(nTs), then the continuous-time frequency represented by
DFT coefficientS[k] is 2πk

N
fs, wherefs = 1/Ts samples per second is the sampling rate.

9. (DFT of elementary signals) The following lists theN -point DFT of some elementary signals.
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Figure 4.2: (A) The magnitude of the Fourier Series coefficientsαk for a periodic continuous-time signal. (B) The
DFT of a periodic discrete-time version of the same signal. Note that the origin for the Fourier Series coefficients is in
the middle of the plot, but the origin for the DFT is to the left.

(a) Complex exponential signal:s[n] = ej
2πm
N n =⇒

(S[0], . . . , S[N − 1]) = (0, . . . , 0, 1, 0, . . . , 0) , (4.43)

where the nonzero coefficient isS[m].

(b) Cosine:s[n] = cos
(
2πm
N
n
)
=⇒

(S[0], . . . , S[N − 1]) = (0, . . . , 0,
1

2
, 0, . . . , 0,

1

2
, 0, . . . , 0) , (4.44)

where the nonzero coefficients areS[m] andS[N −m].

(c) Sine:s[n] = sin
(
2πm
N
n
)
=⇒

(S[0], . . . , S[N − 1]) = (0, . . . , 0,−
j

2
, 0, . . . , 0,

j

2
, 0, . . . , 0) , (4.45)

where the nonzero coefficients areS[m] andS[N −m].

(d) General sinusoid:s[n] = cos
(
2πm
N
n+ φ

)
=⇒

(S[0], . . . , S[N − 1]) = (0, . . . , 0,
1

2
ejφ, 0, . . . , 0,

1

2
e−jφ, 0, . . . , 0) , (4.46)

where the nonzero coefficients areS[m] andS[N −m].

(e) Not quite periodic sinusoid:s[n] = cos
(
2π(m+ε)
N

n
)

where(m+ ε) is non-integer =⇒ The resulting

S[k]’s will all be nonzero9, typically with small magnitudes except those corresponding to frequencies
closest to2π(m+ε)

N
.

(f) Period contains unit impulse period:s[n] = (1, 0, . . . , 0) =⇒

(S[0], . . . , S[N − 1]) =

(
1

N
, . . . ,

1

N

)
. (4.47)

10. (N -point DFT) If S[k] is theN -point DFT of the periodic signals[n] with periodN , then themN -point DFT
coefficients are

S[k] =

{
S[k/m], k = multiple ofm
0, else

(4.48)

9This is the same effect that you saw in lab 3 when you ranfape over a non-integer number of periods of the sinusoid.
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11. (Parseval’s relation) IfS[k] is theN -point DFT ofs[n], then

MS(x) =
1

N

∑
〈N〉

|s[n]|2 =
N−1∑
k=0

|S[k]|2 . (4.49)

This shows that the power in the signals[n] equals the energy of the DFT coefficients.

12. (Uncorrelatedness/orthogonality of complex exponentials) TheN -point correlation between complex exponen-
tial signalsej

2πm
N n andej

2πl
N n,m 6= l, is zero. This property is used in the derivation of the previous one.

4.2.4 Separating Signals Based on Differing Harmonic Series

We’ve already suggested that there are many nearly-periodic signals that occur in the real world, with two notable
examples being many musical signals and vowels in speech signals. These sort of signals can be analyzed using the
Fourier Series or the DFT (applied to samples). We will use the DFT, principally because if we wanted to use the
Fourier series, we would anyway approximately compute the Fourier coefficients with the DFT. In particular, let us
consider a note played on a musical instrument like a flute or clarinet. Such a signal is nearly periodic with some
fundamental period. If the note is played at “concert pitch,” for instance, it has a fundamental frequency of 440 Hz and
a fundamental period of1/440 seconds. Few musical signals, though, are purely sinusoidal. From our development
of the Fourier series, we know that a periodic signal can be described as a sum of complex exponentials (or sinusoids)
with harmonically-related frequencies. That is, the spectrum of our musical note is composed of aharmonic series. In
particular, if the fundamental frequency is 440 Hz, higher harmonics will be at 880 Hz, 1320 Hz, 1760 Hz, and so on.
Figure 4.3 shows a stemp plot of the DFT of an example harmonic series.

Suppose that we have two instruments playing different notes (i.e., the two signals have different fundamental
periods) at the same time. The signal coming from each instrument is a single harmonic series, but a listener “hears”
a signal which is the sum of these two signals. By the linear combination properties of the Fourier Series and DFT,
we know that the spectrum of the combined signal is simply the sum of the spectra of the separate signals. We can use
this property to separate the two signals in the frequency-domain, even though they overlap in the time-domain.

Suppose that we wish to simply remove one of the notes from the combined signal. We’ll assume that we have
recorded and sampled the signal, so we’re working in discrete-time. We’ll also assume that the combined signal is
also periodic10 with some (fairly long) fundamental periodN0. If we take theN0-point DFT of a segment of the
combined signal, we can identify the coefficients that make up each harmonic series. Then, we simply zero-out all of

10In the “real-world,” this is a somewhat questionable assumption. However, we can approximate this behavior quite well by simply using a long
DFT. In this case, each harmonic may be “spread” over several DFT coefficients, so to remove a harmonic we need to zero-out all of coefficients
associated with it. This spreading behavior is the same as what you saw in Lab 3 when runningfape over non-periodic signals.
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Figure 4.3: The DFT of a harmonic series. Note that only the first half of the DFT coefficients are shown in this figure.
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the coefficients corresponding to the harmonics of the note we wish to remove. When we resynthesize the signal with
the inverse DFT, the resulting signal will contain only one of the two notes.

We can extend this procedure to more complicated signals, like melodies with many notes. In this case, we simply
analyze and resynthesize each note individually. Of course, with more simultaneously-sounding notes and more
complicated music, this procedure becomes rather difficult. In this lab, we will implement this procedure to remove a
“corrupting” note held throughout a simple, easily analyzed melody. Though somewhat idealized, the problem should
help to motivate the use of the DFT and the frequency domain.

4.3 SomeMATLAB commands for this lab

• Fourier Series Synthesis inMATLAB : The functionfourier_synthesis is a function that we provide to
compute the approximateT -second Fourier series synthesis formula, equation (4.6). Its inputs are the periodT
and a set of2N + 1 Fourier coefficients. Its output is the synthesized signal. The calling command is

>> [ss,tt] = fourier_synthesis(CC, T, periods, Ns);

whereCCis a vector containing the Fourier coefficients,T is the interval (in seconds) over which the Fourier
series is applied.periods is the (integer) number of periods to include in the resynthesis;periods defaults
to a value of 1 if not provided. The optional parameterNs specifies how many samples per period to include in
the output signal.

It is assumed thatCCcontains the coefficientsα−N . . . αN . (N is implicitly determined from the length ofCC.)
Thus,CChas length2N + 1, theCC(n) element contains the Fourier series coefficientαn−N−1. Further, note
that theα0 coefficient falls atCC(N+1) .

The two returned parameters are the signal vectorss and the corresponding signal support vectortt .

• Fourier Series Analysis inMATLAB : The functionfourier_analysis is the complement to the function
fourier_synthesis . It performsT -second Fourier series analysis on an input signal. The calling command
is

>> [CC,ww] = fourier_analysis(ss,T,N);

wheress is a vector containing the signal samples,T is the intervalT in seconds over which the Fourier series is
to be computed, andN is the number of positive harmonics to include in the analysis. (2N+1 is the total number
of harmonics.) It is assumed thatss contains samples of the signal to be analyzed over the interval[0, T ].

The outputs are the vectorsCC, which contains the2N + 1 Fourier coefficients11, andww, which contains the
frequencies (in Hertz) associated with each Fourier coefficient.

• DFT Analysis in MATLAB : In order to calculate anN -point DFT using MATLAB , we use thefft command12.
The specific calling command is

>> XX = fft(xx)/length(xx);

11Becausefourier analysis is given only samples of the desired continuous-time signal, it cannot compute the Fourier coefficients exactly.
Rather it computes an approximation by using the DFT.

12FFT stands for theFast Fourier Transform, which is a fast implementation of the DFT. Calculating the DFT from its definition requires
O(N2) computations, but the FFT only requiresO(N logN). Additionally, the FFT is faster whenN is equal to a power of two (i.e.,N =
256, 512, 1024, 2048, etc.).
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This computes theN -point DFT of the signal vectorxx , whereN is the length ofxx , and where the signal is
assumed to have support0, 1, . . . , N − 1. Since the MATLAB commandfft does not include the factor1/N in
the analysis formula, as in equation (4.29), we must divide bylength(xx) to obtain theN DFT coefficients
XX.

• DFT Synthesis inMATLAB : The synthesis equation for the DFT is computed with the commandifft . If we
have computed the DFT using the above command, we must also remember to multiply the result byN :

>> xx = ifft(XX)*length(XX);

Note that theifft command will generally return complex values even when the synthesis should exactly
be real. However, the imaginary part should be negligible (i.e., less than1 × 10−14). You can eliminate this
imaginary part using thereal command.

• Indexing the DFT: Since MATLAB begins its indexing from 1 rather than 0, remember to use the following
rules for indexing the DFT:

X [0] ⇒ X(1)

X [1] ⇒ X(2)

X [k] ⇒ X(k+1)

X [N − k] ⇒ X(N-k+1)

X [N − 1] ⇒ X(N)

4.4 Demonstrations in the Lab Section

• Approximating signals as sums of sinusoids, as in Problem 1.

• “Mapping out” this week’s background section

• Relating the Fourier Series to the DFT

• T -second Fourier Series and theN -point DFT

• The DFT in MATLAB

4.5 Laboratory Assignment

1. (Building signals from sinusoids) In this problem, you will “hand tune” the amplitudes and phases of three
sinusoids so that their sum matches a “target” periodic signal as well as possible. The signals are considered to
be continuous-time. One could do this task analytically or numerically using the Fourier series analysis formula,
but we want you to gain the insight that results from doing it manually. A graphical MATLAB program has been
written to facilitate this procedure.

Download the filessinsum.m andsinsum.fig and executesinsum 13. MATLAB will bring up a GUI
window with three sinusoids (colored, dotted lines), the sum of these three sinusoids (the black, dashed line),
and a target periodic signal (the black, solid line). The frequencies of the sinusoids areω0, 2ω0, and3ω0, where
ω0 is the fundamental frequency of the target signal.

13Note that this function willonlywork under MATLAB 6 and higher. It is highly recommend that you use a Windows-based PC for this problem,
since you need to copy the figure window into your report. Using the Windows clipboard simplifies this task significantly.
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As stated earlier, the goal of this problem is to adjust the amplitudes and phases of the three sinusoids to
approximate the target signal as closely as possible. You can enter the amplitude and phase for each sinusoid
in the spaces provide in the GUI window, or using the mouse, you can click-and-drag each sinusoid to change
its amplitude and phase. In addition to displaying the three sinusoids, their sum, and the target signal, the GUI
window also shows the mean-squared error between the sum and the target signals.

Usesinsum.m to hand tune the amplitudes and phases of the three sinusoids to make the mean-squared error
as small as you can.

(Hint: You should be able achieve an MSE less than 0.24. You will receive +2 bonus points if you can achieve
an MSE less than 0.231.)

(Hint: In attempting to minimize the MSE you might try to adjust one sinusoid to minimize the MSE, then
another, then another. After doing all three, go back and see if readjusting them in a “second round” has any
benefits.)

• [16(+2)] Include the resulting figure window in your report. (On Windows systems, use the “Copy to
Clipboard” button to copy the figure, then you can simply paste it into a Word or similar document. There
is also a “Print Figure” button for other systems if you can’t get access to a PC.)

Food for thought14: Did you try the procedure suggested in the hint above, in which you tune each sinusoid one
at a time and then return to each for a “second round” of tuning? If so, can you explain why the second round
did or did not lead to any improvements? (Hint: Consider Fourier series property 12.)

Food for thought: By executingsinsum(1) , sinsum(2) , andsinsum(3) , you can match different signals
with sinusoids. Find MSE’s that are as small as possible for each of these other signals.

2. (Applying Fourier series synthesis)
In this problem you will simply applyfourier_synthesis to a given set of Fourier coefficients and find
the resulting continuous-time signal. Download the filefourier_synthesis.m . Use it to generate an
approximation to the signal with the following Fourier coefficients:

αk =

{
−
(
2
πk

)2
k = ±1,±3,±5, . . .

0 k = 0,±2,±4, . . .
(4.50)

Let T = 0.1 seconds, and generate 5 periods of the signal. UseN = 20, giving you 41 Fourier series coef-
ficients. (Hint: First, define a frequency support vector,kk=-20:20 . Then, generateCCfrom kk and set all
even harmonics to zero.)

• [4] Usestem to plot the magnitude of the Fourier coefficients. Use yourkk vector as the x-axis.

• [3] Useplot to plot samples of the continuous-time signal thatfourier_synthesis returns versus
time in seconds.

• [2] What kind of signal is this?

3. (Applying Fourier series analysis) In this problem you will use the Fourier series analysis and synthesis formula
to see how the accuracy of the approximate synthesis formula (4.6) depends onN .

Download the fileslab4_data.mat andfourier_analysis.m . lab4_data.mat contains the vari-
ablesstep_signal andstep_time , which are the signal and support vectors for the samples of a periodic
continuous-time signal with fundamental periodT0 = 1 second. Note that there areNs = 16384 samples in

14“Food for thought” items are not required to be read or acted upon. There is no extra credit for involved. However, if you include something in
your report, your GSI will read and comment on it. Alternatively, you can discuss “food for thought topics” in office hours.
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one fundamental period. (step_signal andstep_time include several fundamental periods, but you’ll
be dealing with only one period in several parts of this problem. As such, you might find it useful to create a
one-period version ofstep_signal .)

(a) (Look at the signal to be analyzed) First, let us examinestep_signal .

• [3] Useplot to plotstep_signal versus its support vector.

• [3] Compute the mean-squared value ofstep_signal .

(b) (Perform FS analysis) Usefourier_analysis to perform aT0 second Fourier series analysis overa
single periodof step_signal with with N = 50.

• [4] Usesubplot andstem to plot the magnitude and phase of the resulting Fourier series coeffi-
cients. Make sure that your x-axis is given in frequency.

(c) (Resynthesize FS approximations) Usefourier_analysis andfourier_synthesis to generate
an approximations ofstep_signal with N = 25, 50, 100, and 200. (PerformT0-second Fourier
analysis and synthesis over a single period of the signal for eachN . Be sure to resynthesize a single period
with Ns= 16384 samples.)

• [4] Use plot andsubplot to plot your resynthesized signals for eachN in separate panels of a
subplot array.

• [3] Calculate the mean-squared error of the resynthesis for each value ofN .

• [3] Compute the sum of the squared magnitudes ofCCfor each value ofN .

• [3] Find and document a relationship between the mean-squared errors and the sum of squared mag-
nitudes ofCCyou have computed. (Hint: Consider the mean-squared value that you computed for
step_signal . You might also want to look in the Properties of Fourier Coefficients subsection.)

(d) (Meet an MSE target) Find the smallest value ofN for which the mean-squared error of the resynthesis is
less than 0.5% of the mean-squared value ofstep_signal .

• [4] Include this value in your report.

Food for thought: Try repeating Part (b) with the Fourier analysis performed over two fundamental periods of
the signal, and compare to the previous answer to Part (b). Do the new Fourier coefficients turn out as expected?

4. (Using the DFT to describe a signal as a sum of discrete-time sinusoids) In this problem, you will simply
apply the DFT to a particular discrete-time signal, which is also contained inlab4_data.mat , namely,
signal_id . signal_id is considered to be a periodic discrete-time signal with fundamental periodN0 =
128 = length(signal_id) . Take theN0-point DFT ofsignal_id .

• [3] Usestem to plot the magnitude of the DFT versus the DFT coefficient index,k.

• [12] Use the DFT to describesignal_id as a sum of discrete-time sinusoids. That is, for each sinusoid,
give the amplitude, frequency (in radians per sample), and phase.

5. (Use the DFT to remove undesired components from a signal) In this problem you will use the technique
described in Section 4.2.4 to eliminate a noise signal from a desired signal. This signal,melody , is also
contained inlab4_data.mat . This variable contains samples of a continuous-time signal sampled at rate
fs = 8192 samples/second. It contains a simple melody with one note every 1/2 second. Unfortunately, this
melody is corrupted by another “instrument” playing a constant note throughout. We would like to remove this
second instrument from the signal, and we will use the DFT to do so.

It is a good idea to begin by listening tomelody using thesoundsc command.
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(a) (Examine DFT of first note) In order to remove the corrupting instrument, we need to determine where it
lies in the frequency domain. Let’s begin by looking at just the first note (i.e the first 0.5 seconds or 4096
samples). This “note” consists of the sum of two notes — one is the first note of the melody, the other is
the constant note from the corrupting instrument. Each of these notes has components forming a harmonic
series. The fundamental frequencies of these harmonic series are different, which is the key to our being
able to remove the corrupting note. Take the DFT of the first 0.5 seconds (4096 samples) of the signal.

• [3] Usestem to plot the magnitude of the DFT for the first note.

• [3] Identify the frequencies contained in each of the two harmonic series present in signal. What are
the fundamental frequencies?

(b) (Examine DFT of second note) By comparing the spectra of the first two notes, we can identify the cor-
rupting instrument. Take the DFT of the second 0.5 seconds (samples 4097 through 8192).

• [3] Usestem to plot the magnitude of the DFT for the second 0.5 seconds.

• [2] What are the fundamental frequencies (in Hz) of the two harmonic series in this note?

• [2] We know that the melody changes from the first note to the second, but the corrupting instrument
does not. Thus, by comparing the harmonic series found in this and the previous part, identify which
fundamental frequency belongs to the melody and which to the corrupting instrument.

(c) (Identify the DFT coefficients of the corrupting signal) In order to remove the “corrupting” instrument, we
simply need to zero-out the coefficients corresponding to the harmonics of the note from the corrupting
instrument. This is done directly on the DFT coefficients of each 0.5 seconds of the signal. Then, we
resynthesize the signal from the modified DFT coefficients.

• [4] Based on this, and your results from the previous parts of this problem, which DFT coefficients
need to be set to zero in order to remove the corrupting instrument from this signal? (Hint: Remember
the conjugate pairs.)

(d) (Complete the function that removes the corrupting instrument) Finally, we’d like to remove the corrupting
instrument from our melody. Download the filefix_melody.m . This function contains the code that
you’ll use to remove the corrupting instrument from the melody signal. For each note of the melody, the
function takes the DFT, zeros out the appropriate coefficients (which you must provide), and resynthesizes
the signal.

• [4] Complete the function by setting the variablezc equal to a vector containing the DFT coefficients
that must be zeroed-out.

• [1] Execute the function using the command

>> result = fix_melody(melody);

Listen to the resulting signal. Have you successfully removed the corrupting instrument?

(e) (Check your result with the spectrogram) Finally, we’d like to be able to visually check our result. Down-
load the functionmelody_check.m . melody_check produces an image called aspectrogramthat
you can use to check your work. Basically, the spectrogram works by taking the DFT of many short seg-
ments of a signal and arranging them as the columns of an image. Note that the x-axis is time and the
y-axis is frequency. The color of each point on the image represents the strength of the spectral compo-
nent (in decibels) at that time and frequency. The dark horizontal bands show the presence of sinusoidal
components in the signal at the associated times.

• [4] Executemelody_check by passing itmelody . Include the resulting figure in your report.

• [1] Can you identify the components of the corrupting instrument on this spectrogram?

• [4] Now, executemelody_check by passing itresult . Include the resulting figure in your report.
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• [2] Compare the spectrogram ofmelody to the spectrogram ofresult . What differences do you
see? Is this what you expect to see?

6. On the front page of your report, please provide an estimate of the average amount of time spent outside of lab
by each member of the group.
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