Laboratory 6

FIR Filtering and Image Processing

6.1 Introduction

Digital filters are one of the most important tools that signal processors have to modify and improve signals. Part of
their importance comes from their simplicity. In the days when analog signal processing was the norm, almost all
filtering was accomplished with RLC circuits. Now, a great deal of filtering is accomplished digitally with simple (and
extremely fast) routines that can run on special digital signal processing hardware or on general purpose processors.

Sowhy do we filter signals? There are many reasons. One of the biggasiss reductionwhich we have
calledsignal recovery. If our signal has undesirable frequency components, e.g. it contains noise in a frequency
range where there is little or no desired signal, then we can use filters to reduce the relative amplitude of the signal
at such frequencies. Such filters are often caftedquency blocking filtersbecause they block signal components
at certain frequencies. For examplewpass filterdblock high frequency signal componenitsghpass filterdlock
low frequency signal components, doandpass filterblock all frequencies except those in some particular range (or
band) of frequencies.

There are a wide range of uses for filtering in image processing. For example, they can be used to improve the
appearance of an image. For instance, if the image has granular noise, we might smaottior blur the image to
remove such. Typically such noise has components at all frequencies, whereas the desired image has components at
low and middle frequencies. The smoothing acts as a lowpass filter to reduce the high frequency components, which
come, predominantly, from the noise. Alternatively, we might wardharpenthe image to make its edges stand out
more. This requires a kind of highpass filter.

In this lab, we will experiment with a class of filters called Fiiite impulse responjdilters. FIR filters are
simple to implement and work with. In fact, an FIR filtering operation is almost identical to the operationnifig
correlationwhich you have worked with in Laboratory 2. In particular, we will examine the use of FIR filters for image
processing, including both smoothing and sharpening. We will also examine their use on simple one-dimensional
signals.

6.1.1 “The Question”

e How do we implement FIR filters in MrLAB ?

e How can we improve the appearance of an image? Specifically, how can we remove noise or “sharpen” an
image?
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6.2 Background

6.2.1 Implementing FIR Filters

FIR filters are systems that we apply to signals. An FIR filter takes an input sifiaimodifies it by the application
of a mathematical rule, and produces an output sighdl This rule is generally called @ifference equatiorand it
tells us how to compute each sample of the output sighdlas a weighted sum of samples of the input sigtjal.
A common form of the difference equation is given as

M

ylnl = ) bezln — k] (6.1)
k=0

= box[n] + biz[n — 1] + baz[n — 2] + ... + byrx[n — M] (6.2)

Theby's are called thd=IR filter coefficientsand M is theorder of the FIR filter. The set of FIR filter coefficients
completely specifies an FIR filter. Different choices of the order and the coefficients leads to different kinds of filters,
e.g. to lowpass, highpass and bandpass filters.

Equation (6.1) defines the classazfusalFIR filters. A more general form is given by

Mo
y[n] > brzln— K| (6.3)
k=—M

b_anxn+ M+ ... +b_1x[n+1]
+ boz[n] + biz[n — 1] 4+ ... + bap,x[n — Ma] , (6.4)

whereM; and M, are nonnegative integers. Here, the order of the filtdfist+ M. WhenM; > 0, the FIR filter is
non-causal To calculate the “present” value 9fno|, a causal FIR filter only requires “presentl’ & ng) and “past”
(n < ng) values ofz[n]. Non-causal filters, on the other hand, require “future™ ng) values ofz[n]. Thus, a
filter with difference equation given byn] = z[n]| + z[n — 1] is causal, but a filter with difference equation given
by y[n] = z[n] + z[n + 1] is non-causal. The distinction between causal and non-causal filters is necessary if we
wish to implement one of these filters in real-time. Causal filters can be implemented in real-time, but to implement
non-causal filters we generally need all of the data for a signal before we can filter it.

Compare equation (6.3) with the equation for performing running correlation between atgigraaidz[n):

yln] = C(blk],zlk —n)) = > blklzk —n]. (6.5)

k=—o0

Recall that we thought of running correlation as a procedure where we “slid” one signal across the other, calculating
the in-place correlation at each step. If we consider thabjlseof an FIR filter form a signal, then the application

of an FIR filter uses the same procedure with two minor differences. First, when we apply an FIR filter, we are only
“correlating” over a finite range; however, we typically assume- 0 for k outside the rangg\{1, Ms]. Thus, we can

change the limits of summation to range oyemrc, co) without changing the result. Second, when applying a filter,

the signalz[n] is time-reversed with respect to the coefficientd. This is not the case for running correlation.

From the definition alone, it is not easy to see how a filter “works.” With the connection to correlation, though, we
can suggest an intuitive graphical understanding of this process which is shown in Figure 6.1. To calculate a single
sample ofy[n], we time-reverse the signal formed by thecoefficients (by flipping it across the = 0 axis). Then,
we shift this time-reversed signal laysamples and perform in-place correlation. The result isstheample ofy[n].

To build up the entire signaln|, we do this repeatedly, “sliding” one signal across the other and calculating in-place
correlations at each point.

That is,z[n — k] is a time-reversed version efk — n), just ass[—n] is a time-reversed version efn]. Note that we can “time-reverse” the
by coefficients rather tham[n] and achieve the same result.
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Figure 6.1: A graphical illustration of filtering. The filter coefficiertis,and signal to be filtered;[n], are shown on
the top axis. The middle axis showf:] and a time-reversed and shifted versiomofWe multiply these two signals
and sum the result to yield a single sample of the outgluf, which is shown on the bottom axis. For example, to
compute they[6] sample, we multiply the samples ©fn] by bs—,, and sum the result.

You may find it useful to go back to Lab 2 and review the algorithm for in-place correlation. In that description of
the algorithm, we used|n] where here we wish to use the signal formed bytifie. We can use this algorithm when
implementing FIR filters, as well. Note, however, that we want to time-reverdg, tbeefficients when we multiply
them by the incoming signal samples. That is, we always want to multiply_the coefficient by the newest sample
in the buffer.

6.2.2 Edge effects and delay

Suppose that we consider filtering a signdh], with a causal filter whose difference equation is given by

1 1 1 1 1
yln] = g:c[n] + g:c[n — 1]+ g:c[n — 2]+ g:z:[n —-3]+ g:c[n —4]. (6.6)
Thatis, by = (2,%,%,2,4), My = 0, and M, = 4. We can think of the operation of this filter as replacing each

sample ofz[n] with the average of that sample and the past four samples. As such, we often call filters like this
moving-average filtersThe result of this filtering for a particular signal is shown in Figure 6.2.

In this particular case;[n] has a supportinterval ¢, 28] and is zero outside of this range. Consider what happens
to the output signaly[n], near the edges of this range. First, the output sampl@gill be dominated by zeros from
outside of the support interval, because

1 111 1
_ 2 S04+ -0+=-0+-0. 6.7
y[0] 5:c[n]+50+50+50+50 (6.7)

Similarly, y[1], y[2], y[3], andy[4] will also be affected by these zeros, but to a lesser extent. This effect can be seen
in Figure 6.2 ag/[n| “ramps up” to the nominal values afn|. This effect is known as start-up transientA similar

effect occurs beyong[28], where the signal takes a few samples to “die off”. This effect is known anding
transient Both of these transients are knowneaige effectsand need to be considered when filtering.
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Figure 6.2: Input and output of a 5-point moving average filter.

What do the edge effects do to the support length of the output signal? Well, from Figure 6.2 we canige¢ that
has a support length four samples longer than thaf:gf In general, the length of the output signal which is non-zero
will be equal to the length of the input signal plus the order of the FIR filter.

There is one additional point that should be examined. Look at the location of the “dip” in Figure 6[2],Ithe
“dip” occurs at sample 18, but ig[n] it occurs at sample 20. In fact, the entire support interval[ef has not only
gotten larger, it has also been shifted over to the rightiéhalyed by two samples. Why is this? The delay introduced
by this filter results from the fact that each output sample is an average of samples to its left. If we instead define
this filter so that it considers two samples to both the right and left, we can eliminate this delay. That is, we define a
different difference equation:

yln] = 1J;[n +2]+ lac[n +1]+ 1ac[n] + 1ac[n -1+ 1J;[n —2]. (6.8)
5 5 5 5 5

This modification, though, has taken a causal filter and made it non-causal.

Delay is a common problem for causal filters. In fact, the only causal filter that does not introduce delay is a
zero-order amplifier system with a difference equaipt] = box[n]. This system changes the amplitude of a signal,
but does nothing else. Compare this to the system with difference equétioa x[n — N]. This system’s only effect
is to delay the signal byv samples. In some circumstances, the delay introduced by a causal filter does not affect
the operation of the system. For our purposes in this laboratory, we will need to be careful to account for the delay
introduced by FIR filters when comparing two signals with a mean-squared or RMS distortion measure.

6.2.3 Noise and distortion

One of the most common reasons to apply a filter is to attempt to renmse There is no single definition of noise,
but the most general usage describes noise as any unwanted component of a signal. For instance, a common type of
electrical noise has a sinusoidal characteristic with a frequency of 60 Hz. This noise arises from the frequency of the
alternating current used to distribute electricity. This 60 Hz signal can “leak” into other systems and corrupt sensor
measurements. Another common type of noisearglom noise This sort of noise typically has a jagged-looking
characteristic. It typically manifests itself as static in audio signals and “snow” in images.

Filtering gives us a means of reducing the noise in a signal thriraghency blockingln general, filters operate
by attenuating (i.e., blocking) certain frequencies in a signal while passing others with relatively little attenuation.
Note that removing noise in this way requires the noise to have a different frequency-domain description than the
signal of interest.
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6.2.3 Noise and distortion
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Figure 6.3: A block diagram of additive noise and a recovery filter that attempts to remove the noise.

For instance, consider the example of 60 Hz sinusoidal noise. If our signal of interest is composed of frequencies
above 60 Hz, we can treat this component as low frequency noise and attempt to remove it with a filter that blocks low
frequencies. This sort of filter is generally calletighpass filter If our signal has components above and below 60
Hz, we might try to remove the corrupting signal by only eliminating frequencies near 60 Hz. This would require a
bandpass filter

Random noise typically has frequency components all over the spectrum. However, a good portion of these com-
ponents will usually have higher frequency than the frequencies in our signal. Thus, we might consider the application
of alowpass filterthat blocks high frequencies to reduce the amplitude of noise components.

Consider the block diagram in Figure 6.3. This is a model where a signal of intefestis corrupted by the
addition of a noise signali[n]. We apply arecovery filterto try to remove the noise component fraefm] = z[n] +
v[n]. The resulting signal i8[n] = &[n] + 9[n], wherez[n] is the filtered signal of interest (which we hope will be as
similar tox[n] as possible) andl[n] is the filtered noise signal (which we hope will be as small as possible). Often we
can tune the noise-removal filter to increase its “strength” (by, for instance, increasing the length of a moving average
filter). The “stronger” the filter, the more noise we can eliminate. Unfortunately, the filter also distorts the signal of
interest; a stronger filter will distort the signal of interest more. Thus, the use of filters to remove noise can be thought
of as finding a tradeoff between two types of distortion. The goal, then, is to find the point where the total distortion (as
measured by the mean-squared error or RMS error betwfegands[n]) is minimized as a function of filter strength.

Nonlinear filtering

While standard FIR filters can be useful for noise reduction, in some cases we may find that they distort the desired
signal too much. An alternative is to usenlinearfilters. Nonlinear filters have the potential to remove more noise
while introducing less distortion to the desired signal; however, the effects of these filters are much more difficult to
analyze.

Consider the case of an image, for instance. One of the most important features of images of natural scenes
areedges Edges in images are usually just sharp transitions where one object ends and another begins. If we are
attempting to remove high-frequency noise from an image, we will often apply a lowpass filter. Edges, though, have
considerable high-frequency content, so the edges in resulting image will be smoothed out. To get around this problem,
we can consider the application of a common nonlinear filter calladdian filter Median filters replace each sample
of a signal with the median (i.e., the most central value) of a block of samples around the original sample. That is, we
can describe the operation of the median filter as

y[n] = Median(z[n + M],...,zn],...,z[n — Ma)]) (6.9)

where
T((N+1)/2) N odd

6.10
3(x(n/2) +T(nj2+1)) N even ( )

Median(zy,...,zN) = {

and wherer ) is then™ smallest of the values; throughz x. Theorder of the median filter is given by, + Mo,
and it determines how many samples will be included in the median calculation. Note that the filter is noncausal
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because its output depends on future, as well as past and present, inputs. Unlike lowpass filters, median filters tend
to preserve edges in signals very well. These filters are also very powerful for removing certain types of noise while
introducing relatively little distortion. In this laboratory, we will examine the effect of applying nonlinear filters to
two-dimensional signals.

6.2.4 Filtering two-dimensional signals

The above discussions of filtering are for one-dimensional signals. Suppose we would like to filter two-dimensional
signals like images instead of just one-dimensional signals. There are three ways to approach this.

The first approach simply applies one-dimensional filters to each of the rows (or each of the columns) of an image.
This approach tends to produce an “uneven’ filtered signal that is, for instance, smoothed in one dimension but not the
other. This unevenness is generally not desirable and motivates a second approach.

The second approach is somewhat “stronger” than the first. This approach applies one-dimensionabiiters to
the rows and the columns. In this lab we will adopt the convention that we first filter the columns, and then filter the
rows of the resulting image. Most types of filters that we use in one dimension can be extended to two dimensions in
this fashion. For example, if we apply the moving average filter with difference equation give in equation (6.6), for
instance, this will have the effect of smoothing the image. Note that the edge effects and delay issues discussed earlier
also apply to two-dimensional filtering done in this fashion.

If we apply that moving average filter with order 4 to the columns and then the rows of the image, what is the
mathematical effect of the operation? It is not too difficult to see that each sample of the image has been replaced by
the average of & x 5 block of pixels. This suggests that we could describe this filtering operation in terms of two-
dimensional set of filtering coefficients. For instance, the difference equation for this two-dimensional filter would
be

y[m,n] = Zzim[m—k,n—l]. (6.11)

This operation is equivalent to filtering with a two-dimensional set of coefficigntsvhereb,, ; = % fork=0,....,4
andl =0,...,4.

This result suggests the third, most general, approach to FIR filtering of two-dimensional signals. The general
difference equation for this approach is

M; N
y[m,n] = Z Z bgz[m —k,n—1]. (6.12)
k=—M; l=—N;

[—My, M,] and[—N, N;| define the range of nonzero coefficients. Note that a filter, such as the one defined by
equation 6.11, izausalif M; and N; are non-negative. However, we should also note that in image processing,
causality is rarely important. Thus, two-dimensional FIR filters typically have coefficients centered as@und
schematic of such a set of filter coefficients is shown in Figure 6.4.

6.2.5 Image processing with FIR filters

If you've ever used photo editing software like Adobe Photoshop, you may have seen operations called “smoothing”
and “sharpening”. These and many similar operations are typically implemented using simple two-dimensional FIR
filters. We will consider three such operations in this laboratory: smoothingoy, edge findingand sharpening (or
edge enhancemént

We've already suggested that a moving average filter performs a smoothing operation. However, there are more
advanced ways of smoothing. Consider, for instance, a filter that weights samples nearby more strongly than those
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Figure 6.4: The coefficients of a two-dimensional moving average filter. In this figure, pixels exist at the intersection
of the horizontal and vertical lines.

that are far away. This performs a “weaker” smoothing, but it also introduces less distortion. Because of this, these
sorts of filters are often more useful for random noise reduction than standard moving average filters.

The “edge finding” filter highlights edges in an image by producing large positive or negative values while setting
constant regions of the image to zero. The most basic edge finding filter is a simple one-dimdinstatitierence
filter. A first difference filter has the difference equation

yln] = z[n] — z[n — 1]. (6.13)

This filter will tend to respond positively to increases in the signal and negatively to decreases in the signal. Adjacent
input samples that are identical (or nearly so), though, will tend to cancel one another, causing the output to be zero (or
close to zero). There are various two-dimensional “equivalents” of the first-difference filter, many of which respond
to edges of a particular orientation. One general edge-finding filter has the following difference equation:

ym,n] = izim+1,n+1] - zm+1,n + lizm+1,n-1]
- z[m,n+1] + 3z[m,n] - z[m,n—1] (6.14)
+ fzfm-1n+1 — zm-1,n + fzm—1,n-1]

This filter “finds” edges of almost any orientation by outputting a value with large magnitude wherever an edge occurs.
Both the first difference filter and this general edge-finding filter are examples of highpass filters. Note the “oscillatory”
pattern ofb; values such that adjacent coefficients are negatives of one another. This pattern is characteristic of
highpass filters. Note that both of these filters will typically produce both positive and negative values, even if our
input signal is strictly non-negative. Also note that for both of these filters, the averagelgf ¢befficients is zero;
this means that these filters tend to “reject” constant regions of an input signal by setting them to zero.

The third operation, sharpening, makes use of an edge finding filter as well. Basically, the sharpening filter pro-
duces a weighted sum of the output of an edge-finding filter and the original image. Suppaserthdtis the
original image, and/[m, n| is the result of filtering:[m, n] with the filter defined in equation (6.14). Then, the result
of sharpeningz|[m, n] is given by

z[m,n] = x[m,n] + by[m, n], (6.15)

whereb controls the amount of sharpening; higher values pfoduce a “sharper” image. Note thdin, n| can also
be viewed as the output of a single filter. For display purposes, wehrgiholdthe resulting signal so that the output
image has the same range of data values as the inputimage. That is, assuming that our input image has values between
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0 and 255, the final output of the sharpening operatign, n| will be

0 z[m,n] <0
Zlm,n] = ¢ z[m,n] 0<z[m,n] <255 (6.16)
255 255 < z[m, n|

Note that thresholding is@onlinearoperation, but it is not crucial to the sharpening process. This final result can also
be considered to be the output of a single nonlinear filter.

Sharpening is a useful operation when an image has undergone an undesired smoothing operation. This happens
frequently in optical systems when they are not entirely in focus. Unlike smoothing filters, though, sharpening filters
tend to enhance random noise; often they may make “noise-like” components of a signal visible where they were not
visible before.

6.3 SomeMATLAB commands for this lab

e 1-D Filtering in MATLAB: The usual method for causal filtering inAVILAB is to use thdilter command,
like this:

>> yy = filter(bb,1,xx);

(We'll use the second parameter later in the course when we study IIR filtersi a vector containing the
discrete-time input signal to be filtereldb is a vector of théy filter coefficients, angy is the output signal.
The first element of this vectdop(1) , is assumed to big.

By default, filter returns a portion of the filtered signal equal in lengthxxa Specifically, the resulting
signal includes the start-up transient but not the ending transient. This means that the output will be delayed by
an amount determined by the coefficients of the filter.

A method for filtering which does not introduce delay is often desirable, i.e. a noncausal filtering method, espe-
cially when calculating RMS error between filtered and original versions of a signal. The confittex@d

is meant as a two-dimensional filtering routine, but it can be used for 1-D filtering as well. Further, it can be
instructed to return a “delay-free” version of the output signal. When utiieg? , it is important thaix

andbb are either both row vectors or both column vectors. Then, we use the command

>> yy = filter2(bb,xx,'same");
wherexx is the input signal vectoygy is the output signal vector, arub is the vector of filter coefficients. If
the length of the vectdrb is odd, theh, coefficient is taken to be the coefficient at center of the vedaorlf

the length otb is even by is taken to be just left of the center. The outpufitiér2 has support equal to
that of the input signatx .

Though we will not use these additional options, we can also filtae return the full length of the filtered
signal (the length of the input signal plus the order of the filter) like this:

>> yy = filter2(bb,xx,'full’);

or just the portion not affected by edge effects (the length of the input signal minus twice the order of the filter),
like this:

>> yy = filter2(bb,xx,'valid");
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e 2-D Filtering in MATLAB: Three approaches to filtering a two-dimensional signal were mentioned in Sec-
tion 6.2.4. The first approach, which simply applies a one-dimensional filter to each row of the image (alterna-
tively, to each column) can be implementing with thetae commands described in the previous bullet.

The second approach applies a one-dimensional filter first to the columns and then to the rows of the image
produced by the first stage of filtering. If the one-dimensional filter is causal with coeffidigntstained in

the MATLAB vectorbb and the image is contained in the 2-dimensional matxixthen this approach can be
implemented with the command

>> yy = filter(bb,1,filter(bb,1,xx)")’;

Note that we do not need to vectorize the image because when presented with an matfilter applies
one-dimensional filtering to each column. However, to perform the second stage of filtering (on rows of the
image produced by the first stage), we need to transpose the image produced by the the first stage of filtering
and then transpose the final result again to restore the original orientation. This approach will introduce edge
effects at the top and on one side of the image; however the resulting image will be the same size as

The third approach uses a two-dimensional set of coefficignts If these coefficients are contained in the
matrixbb and the image is contained in the matxix, then the filter can be implemented with the command

>> yy = filter2(bb,xx,'same");

Note that thésame' parameter indicates that the filter is non-causal and thustheoefficient is located as
near to the center of the matidb as possible. The same alternate third parametefgtin2 that are listed
in the 1-D filtering section apply here as well.

e Generating filter coefficients: We will be examining the effects of many types of filters in this laboratory.
Some have filter coefficients that can be generated easilyan.iB . Others require a function (which we will
provide to you) to generate. Note that the the vectors representihg'sheill be column vectors.

1. AnL-point moving averagglter has filter coefficients given bgb = ones(L,1)/L
2. Afirst-differencdilter has filter coefficients given biyb = [1; -1] ;

3. The functiong_smooth produces coefficients for a particular type of smoothing (lowpass) filters with
easily tunable “strength’g_smooth takes a single real-valued parameter, which is the “width” of the
filter, and returns a set of tapered filter coefficients of the correspondinglfitte;or example,

>> bb = g_smooth(1.2);

returns the coefficients for a filter with “width” 1.2. ¢ smooth filter with width O will pass the input
signal without modification, and higher widths will smooth more strongly. Good nominal values for the
width range from 0.5 to 2. Thi, coefficients forg_smooth filters with several widths are plotted in
Figure 6.5.

4. The functiorg_smooth2 is the two-dimensional equivalent gf smooth . It again takes a single input
parameter (the width of the filter) and returns the two-dimensional set of filter coefficients of the corre-
sponding filter. For example,

>> bb = g_smooth(0.8);

returns the coefficients of a filter with width 0.8.

5. In Section 6.2.5, we presented a general-purpose two-dimensional edge-finding filter in equation (6.14).
The coefficients for this filter are given by
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Figure 6.5: The coefficients fay_smooth filters with varying widths.

>> bb = [.25, -1, .25; -1, 3, -1; .25, -1, .25];

6. In Section 6.2.5, we also discussed a method for implementing a sharpening filter. Since we include a
threshold operation, this operation is nonlinear and cannot be accomplished using only an FIR filter. Thus,
we provide thesharpen command, which takes an image and a sharpening “strength” and returns a
sharpened image:

>> yy = sharpen(xx,0.7);

The second parameter is the strength fadtoas discussed in Section 6.2.5. A sharpening strength of O
passes the signal without modification.

7. As described in Section 6.2.3, median filters are a special type of nonlinear filter, and they cannot be
described using linear difference equations. To use a median filter on a one-dimensional signal, we use the
command medfiltl like this:

>> yy = medfilt1(xx,N);

N is theorder of the median filter, which simply describes how many samples we consider when taking
the median. In two dimensiofsve usemedfiltl  twice:

>> yy = medfiltl(medfiltl(xx,N)',N)";

Again,Nis the order of the median filter. Here, we are using a one-dimensional filter on both the rows and
columns of the image. Note that sincedfiltl  operates down the columns, we need to transpose the
image between the filtering operations and again at the end.

6.4 Demonstrations in the Lab Section

e Filtering in MATLAB.

e FIR filters for noise reduction

2medfiltl s a part of the signal processing toolbox.
3We can also usmedfilt2 , but this function is a part of the Image Processing Toolbox which we do not require for this amect2
works by outputting the median of @i x NN block of the image.
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e Image processing with FIR filters

e Median filtering

6.5 Laboratory Assignment

1. (Noise reductionin 1-D) In this problem, you investigate noise-reduction on one-dimensional signals. Download
the filelab6_data.mat , which contains various signals for this lab. In this problem, we will consider the
signalsimple , which is a noise-free one-dimensional signal, aimdple_noise , which is the same signal
with corrupting random noise.

(a) (Effects of delay) First, we’ll examine the delay introduced by the two filtering implementatiiters,
andfilter2 , that we will be using. Filtesimple with a 7-point running average filter. Do this twice,
first usingfilter and then usingjlter2 with the'same' parametet.

e [3] Usesubplot andplot to plot the original signal and two filtered signals in three subplots of
the same figure.

e [2] One of the filtering commands has introduced some delay. Which one? How many samples of
delay have been added?

e [3] Compute the mean-squared error between the original signal and the two filtered signals. Which
is lower? Why?

(b) (Measuring distortion in 1-D) Now, ud#ter2 to apply the same 7-point running average filter to
the signalsimple_noise . Referring to Figure 6.3, we considsimple to be the signal of interest
z[n], simple_noise  to be the noise corrupted signdh], and their difference to be the noisén| =
s[n] — z[n]. Note that the lower of the two mean-squared errors that you computed in Problem 1a is
MS(Z[n] — z[n]), which is a measure of the distortion of the signal of interest introduced by the filter.

e [2] Compute the mean-squared error betwsenple andsimple_noise . Referring back to
Figure 6.3, this is\/ S(v[n]), the mean-squared value of the noise.
e [2] Compute the mean-square error between your filtered signaliampde . This value isM S(§[n]—
z[n]), which is a measure of how a good a job the filter has done at recovering the signal of interest.
¢ [1] Determine the distortion due to noise at the output of your reconstruction filterXi.8(o[n]))
by subtractingV/ S(z[n] — z[n]) from M S(§[n] — z[n]).
e [3] CompareM S(o[n]) andM S(3[n] —z[n]) to M S(v[n]). What is the dominant source of distortion
in this filtered signal?

(¢) (Running average filters in 1-D) Uditer2 to apply a 3-point, a 5-point, and an 9-point moving
average filter tsimple_noise

e [3] Usesubplot ,subplot ,andstem to plot the original signal, the three filtered signals, and the
three sets of filter coefficients, in seven panels of the the same figurepl@disefor the signals and
stem for the coefficients.)

¢ [3] Compute the mean-squared error between each filtered signalrapte .

e [2] Which of the four moving average filters that you have applied has the lowest mean-squared error?
Compare this value td7.S(v[n]).

(d) (Tapered smoothingfilter in 1-D) Download the filesmooth.m , and use it to generate filter coefficients
with “widths” of 0.5, 0.75, and 1.0. (Note the lengths of the returned coefficient vectors. You should plot
the filter coefficients to get a sense of how the “width” factor affects the them. Yiltk® to apply
these filters tsimple_noise

4Henceforth, every time you ugiter2 in this laboratory, you should use tteame’ parameter.
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e [3] Useplot andsubplot to plot the three filtered signals and the three sets of coefficients in six
panels of the same figure.

¢ [3] Compute the mean-squared error between each filtered signalrapte .

e [3] Which of these filtered signal has the lowest mean-squared error? Compare this value to the lowest
mean-squared error that you found for the moving average filters aldSt@[n]).

2. (Noise reduction on images) In this problem, you look at the effects of applying smoothing filters to an image
for noise reduction.
Download the filegpeppers.tif 5 andpeppers_noisel.tif . The first is a “noise-free” image, while
the second is an image corrupted by random noise. Load these two imagesimntasv

(a) (Examining 2-D filter coefficients) We'll be using the functignsmooth2 to produce filter coefficients
for this problem. To get a sense of what these coefficients look like, generate the coefficients for a
g_smooth2 filter with width 5. In two side-by-side subplots of the same figure:

e [2] Display the coefficients as an image usintagesc .
¢ [1] Generate a surface plot of the coefficients using the commaritbb)  (assuming your coeffi-
cients matrix is calledb).

(b) (Examine the effects of noise) First, we’'ll consider the noisy sigeapers_noisel

e [3] Use subplot to displaypeppers andpeppers_noisel side-by-side in a single figure.
Remember to set the color map, set the axis shape, and include a colorbar as you did in lab 4.
¢ [3] Compute the mean-squared error between these two images.
(¢) (Minimizing the MSE) Our goal is to find @ _smooth2 reconstruction filter that minimizes the mean-

squared error between the filtered image and the original, noise-free imagiit&y8e  when filtering
signals in this problem.

e [6] Find a filter width that minimizes the mean-squared error. What is this filter width and the corre-
sponding mean-squared error? (Hint: you might want to plot the mean-squared error as a function of
filter width.)

o [2] Display the filtered image with the smallest mean-squared error.

e [2] Look at some filtered images with different widths. Can you find one that looks better than the
minimum mean-squared error im&@eVhat filter width produced that image?

3. (Saltand pepper noise inimages) Next, we’'ll look at methods of removing a different type of random noise from
this image. Download the filpeppers_noise2.tif and load it into MaTLAB. This signal is corrupted
with salt and peppenoise, which may result from a communication system that loses pixels.

(a) (Examining the noise) First, let's see what we're up against. Salt and pepper noise randomly replaces
pixels with a value of either 0 or 255. In this image, one-fifth of the pixels have been lost in this manner.
e [2] Display peppers_noise2
e [2] Compute the mean-squared error between this imag@epgers .
(b) (Using lowpass filters) Now, let’s try using somesmooth?2 filters to eliminate this noise. Start by using

filter2 to filter peppers_noise2  with ag_smooth2 filter of width 1.3. Note that this is very close
to the optimal width value.

SLike “cameraman”, “peppers” is a standard image used for testing image processing routines. Our version, however, is smaller than the
traditionally used image.

6Though mean-squared error is widely used as a measure of signal distortion, it is well known that its judgments of quality do not always
correspond closely to the eye’s judgments of quality.
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o [2] Display the resulting image.
e [3] Compute the mean-squared error.
(c) (Using median filters) Finally, let's use a median filter to try to remove this noise. Apply median filters of
order 3 and 5 t@eppers_noise2
e [3] Usesubplot to display the two filtered images side-by-side in the same figure.
e [3] Compute the mean-squared errors between the median-filtered signg@le@rats .

e [2] Look at the filtered images and describe the distortion that the median filters introduce into the
signal.

e [3] Compare the median filter to thge smooth2 filters. Discuss both measured distortion and the
appearance of the filtered signals.

4. (Edge-finding and enhancing) In this last problem, we’'ll look at edge-finding and sharpening filters.

(a) (Applying a first difference filter) In order to see how edge-finding filters work, let’s start in one dimension.
Usefilter to apply a one-dimensional first difference filter to the sigiadple (which can be found
in lab6_data.mat ).
e [2] Plot the resulting signal.
e [3] There are five non-zero “features” of this signal. (These features should be clear from the plot.)
Describe them and what they correspond teimple .

(b) (“Finding” edges) Now we'd like to look at the effects of the general edge-finding filter presented in Section
6.2.5. Usdilter2 to apply this filter topeppers .
e [2] Display the resulting image.
e [2] Describe the resulting image.
e [2] Zoom in on the filtered image and examine some of the more prominent edges. What do you
notice about these edges? (Hint: Are they just a “ridge” of a single color?)

(c) (Sharpening animage) Downlosldarpen.m and use the function to display several sharpened versions
of thepeppers image.

e [3] Use subplot . to display the sharpened image with a “strength” of 1 next to the original
peppers image.

e [2] Zoom in on this sharpened image. What makes it look “sharper”? (Hint: Again, look at the
prominent edges of the images. What do you notice?)

e [2] The sharpened images (especially for strengths greater than 1) generally appear more “noisy” than
the original image. Speculate as to why this might be the case.

(d) (Using sharpening to remove smoothing) Finally, we want to try using the “sharpen” function to undo a
blurring operation. Download the filgeppers_blur.tif and load it into MATLAB.
e [2] Compute the RMS error betwe@eppers andpeppers_blur
e [6] Use sharpen to “de-blur” the blurred image. Find the sharpening strength that minimizes the RMS
error of the “de-blurred” image. Include this strength and its corresponding RMS error in your report.
e [2] Display the “de-blurred” image with the minimum RMS error and alonggidppers_blur
usingsubplot . Include the resulting figure in your report.
Note that sharpening is very much a perceptual operation. The minimum distortion sharpened image
may not look terribly much improved. Look at what happens as you increase the sharpening factor even
more. With additional “sharpening,” the (measured) distortion may increase, but the result looks better
perceptually.
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5. On the front page of your report, please provide an estimate of the average amount of time spent outside of lab
by each member of the group.
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