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Laboratory 9

Filter Design, Modeling, and thez-Plane

9.1 Introduction

So far, we’ve been considering filters as systems that we design and then apply to signals to achieve a desired affect.
However, filtering is also something that occurs everywhere, without the intervention of a human filter designer. At
sunset, the light of the sun is filtered by the atmosphere, often yielding a spectacular array of colors. A concert
hall filters the sound of an orchestra before it reaches your ear, coloring the sound and adding pleasing effects like
reverberation. Even our own head, shoulders, and ears form a pair of filters that allows us to localize sounds in space.

Quite often, we may wish to recreate these filtering effects so that we can study them or apply them in different
situations. One way to do this is tomodelthese “natural” filters using simple discrete-time filters. That is, if we can
measure the response of a particular system, we would often like to design a filter that has the same (or a similar)
response.

One of the goals for this laboratory is to introduce the use of discrete-time filters as models of real-world filters.
In particular, we will examine how to apply a modeling approach to understanding vowel signals. This in turn will
suggest a way that we might improve the performance of the vowel classifier we developed in Lab 8 using an automatic
modeling method.

Another goal of this lab is to present a method of filter design calledpole-zero placement design. Working with
this method of filter design is extremely useful for building an intuition of how thez-plane “works” with respect to the
frequency domain that you are already familiar with. The design interface that we use for this task should help you to
develop a graphical understanding of how poles and zeros affect the frequency response of a system. We will use this
design methodology both to design a traditional “goal-oriented” lowpass filter, and to do some filter modeling.

9.1.1 “The Question”

• How can wedesignfilters for certain purposes?

• How can we model vowel production using discrete-time filters?
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9.2 Background

9.2.1 Filters and thez-transform

Previously, we have presented the general time-domain input-output relationship for a causal filter1 given by the
convolution sum:

y[n] = x[n] ∗ h[n] =
∑
k

h[k]x[n− k] =
∑
k

x[k]h[n− k] , (9.1)

wherex[n] is the input signal,y[n] is the output signal, andh[n] is the filter impulse response. Using thez-transform
techniques described in Chapter 7 ofDSP First, we can also describe the input/output relationship in thez-domain as

Y (z) = H(z)X(z) , (9.2)

whereX(z) is thez-transform ofx[n], which is the complex-valued function, defined on the complex plane2 by

X(z) =
∑
n

x[n]z−n , (9.3)

whereY (z) is thez-transform ofy[n], defined in a similar fashion, and whereH(z) is thesystem functionof the filter,
which is a complex-valued function defined on the complex plane by one of the following equivalent definitions:

1. The system function is thez-transform of the filter impulse responseh[n], i.e

H(z) =
∑
n

h[n]z−n . (9.4)

2. ForX(z) andY (z) as defined above, the system function is given by

H(z) =
Y (z)

X(z)
. (9.5)

The system function has a very important relationship to the frequency response of a system,H(ω̂). The system
function evaluated atejω̂ is equal to the frequency response evaluated at frequencyω̂. That is,

H(ω̂) = H(ejω̂) . (9.6)

We can derive this result from equation 9.4. If we letz = ejω̂, then we know thatH(z) = H(ejω̂) =
∑
n h[n]e

−jω̂n.
This is simply the definition of a system’s frequency given its impulse responseh[n].

9.2.2 FIR Filters and thez-transform

For a causal FIR filter, one can easily determine the system function using either of the equivalent definitions given
above. However, let us highlight the use of the second definition, which will be useful in the next subsection where
the first definition is difficult to apply. In particular, for a causal FIR filter with coefficients{b0, . . . , bM}, the general
time-domain input-output relationship for a causal FIR filter is given by the difference equation

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2] + · · ·+ bMx[n−M ] . (9.7)
1Note that in this lab, we will only be concerned with causal filters.
2Thecomplex planeis simply the set of all complex numbers. The real part of the complex number is indicated by the x-axis, while the imaginary

part is indicated by the y-axis.

142 The University of Michigan, All rights reserved



9.2.2 FIR Filters and thez-transform

Taking thez-transform of both sides of this difference equation yields

Y (z) = b0X(z) + b1X(z)z
−1 + b2X(z)z

−2 + · · ·+ bMX(z)z
−M

= X(z)(b0 + b1z
−1 + b2z

−2 + b3z
−3 + · · ·+ bMz

−M ) , (9.8)

where we have used the fact that thez-transform ofx[n−no] isX(z)z−no. Dividing both sides of the above byX(z)
gives the system function:

H(z) =
Y (z)

X(z)
= b0 + b1z

−1 + b2z
−2 + b3z

−3 + · · ·+ bMz
−M . (9.9)

Notice thatH(z) is a polynomial of orderM . We can factor the above complex-valued polynomial as3

H(z) = K(1− r1z
−1)(1− r2z

−1)(1 − r3z
−1) · · · (1− rMz

−1) , (9.10)

whereK is a real number called thegain, and{r1, . . . , rM} are theM rootsor zerosof the polynomial, i.e. the values
r such thatH(r) = 0. We typically assume that the filter coefficientsbk are real. In this case, the zeros may be real or
complex, and if one is complex, then its complex conjugate is also a zero. That is, complex roots come in conjugate
pairs.

The very important point to observe now from equation (9.10) is that the system functionH(z) of a causal FIR
filter is completely determined by its gain and its zeros. Therefore, we can think of{K, r1, . . . , rM} as one more way
to describe a filter4. We will see that when it comes to designing an FIR filter to have a certain desired frequency
response, the description of the filter in terms of its gain and its zeros is by far the most useful. In other words, the best
way to design a filter to have a desired frequency response (e.g., a low pass filter) is to appropriately choose its gain
and zeros. One may then find the system function by multiplying out the terms of equation (9.10), and then picking
off the filter coefficients from the system function. For example, the number multiplyingz−3 in the system function is
the filter coefficientb3. The specific procedure will be described shortly.

The fact that we may design the frequency response of a causal FIR filter by choosing its zeros5 stems from the
following principle:

If a filter has a zeror located on the unit circle, i.e.|r| = 1, thenH(\r) = 0, i.e. the frequency response
has anull at frequency\r. Similarly, if a filter has a zeror located close to the unit circle, i.e.|r| ≈ 1,
thenH(\r) ≈ 0, i.e. the frequency response has adip at frequency\r. In either case,H(ω̂) ≈ 0, when
ω̂ ≈ \r.

The above fact follows from the property that ifω̂ = \r and|r| = 1, thenejω̂ = r, and so

H(ω̂) = H(ejω̂) = H(r) = 0 . (9.11)

A similar statement showsH(ω̂) ≈ 0 when|r| ≈ 1 and/orω̂ ≈ \r.
From this fact, we see that we see that we can make a filter block a particular frequency, i.e. create a null or a dip in

the frequency response, simply by placing a zero on or near the unit circle at an angle equal to the desired frequency6.
On the other hand, the frequency response at frequencies corresponding to angles that are not close to these zeros will
have large magnitude. The filter will “pass” these frequencies. The specific procedure to design such a filter is the
following.

3The Fundamental Theorem of Algebra guarantees thatH(z) factors in this way.
4Previous ways of describing a filter have included the filter coefficients, the impulse response sequence, the frequency response function, and

the system function.
5The gain does not affect the shape of the frequency response.
6Since non-real zeros must occur in conjugate pairs, we must also place a conjugate zero on the unit circle, i.e. a zero whose angle is the negative

of the first.
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1. Choose frequencieŝω1, ..., ω̂L at which the frequency response should contain a null or a dip.

2. Choose zerosri = ρiejω̂i , i = 1, . . . , L, with ρi = 1 or ρi ≈ 1, depending upon whether a null or a dip is
desired at frequencŷω. For eacĥωi 6= 0 choose also a zerorj that is the complex conjugate ofri. LetM be the
total number of zeros chosen.

3. Form the system functionH(z) = K(1− r1z−1)× · · · × (1− rMz−1), whereK is a gain that we also choose.

4. Cross multiply the factors ofH(z) found in the previous step so as to expressH(z) as a polynomial whose
terms are powers ofz−1.

5. Identify the FIR filter coefficients{b0, . . . , bM}, which are simply the coefficients of the polynomial found in
the previous step, as shown in equation (9.9).

9.2.3 IIR filters and rational system functions

We now consider IIR filters. The general time-domain input-output relationship for a causal IIR filter is given by the
difference equation

y[n] = b0x[n] +b1x[n− 1] + b2x[n− 2] + · · ·+ bMx[n−M ]

+a1y[n− 1] + a2y[n− 2] + · · ·+ aNy[n−N ] . (9.12)

Here, we have the usual FIR filter coefficients,bk, but we also have another set of coefficientsak, which multiplypast
values of the filter’s output. We will call thebk ’s the feedforward coefficientsand theak’s the feedback coefficients7.
If the ak ’s are zero, then this filter reduces to a causal FIR filter.

As an example, consider the simple IIR filter with difference equation:

y[n] = x[n] +
1

2
y[n− 1] (9.13)

What is the impulse response of this filter? If we assume8 thaty[n] = 0 for n < 0, one can straightforwardly show
that the impulse response is

h[n] =

(
1

2

)n
, n ≥ 0, (9.14)

which is never zero for any positiven. (Note that the impulse response is generally not so simple to compute; this is
an unusual case where the impulse response can be obtained by inspection.) Thus, by introducing feedback terms into
our difference equation, we have produced a filter with an infinite impulse response, i.e., an IIR filter.

In general, computing the system function by taking thez-transform of the resulting infinite impulse may not be
trivial because of the required infinite sum, and also because it may be difficult to find the impulse response. However,
we can use the fact thatH(z) = Y (z)/X(z) to determine the system function. To do this, we first collect they[n]
terms on the left side of the equation and take thez-transform of the result.

y[n]− a1y[n− 1]− · · · − aNy[n−N ] = b0x[n] + b1x[n− 1] + · · ·+ bMx[n−M ]

(9.15)

Y (z)− a1Y (z)z
−1 − · · · − aNY (z)z

−N = b0X(z) + b1X(z)z
−1 + · · ·+ bMX(z)z

−M

(9.16)

Y (z)(1− a1z
−1 − · · · − aNz

−N ) = X(z)(b0 + b1z
−1 + · · ·+ bMz

−M) (9.17)

H(z) =
Y (z)

X(z)
=
b0 + b1z

−1 + · · ·+ bMz−M

1− a1z−1 − · · · − aNz−N
(9.18)

7In some texts (and in MATLAB ), the feedback coefficients are defined as the negatives of theak coefficients given here. Because of this, you
should always be sure to check which convention is used.

8This assumption is one of the “initial rest conditions” discussed in chapter 8 ofDSP First.
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9.2.3 IIR filters and rational system functions

Equation (9.18) shows the general form of the system function of an IIR filters. Since it is the ratio of two polynomials,
it is called arational function9.

Just as we could factor the polynomial in equation (9.9), we can do the same with equation (9.18) to yield

H(z) = K
(1− r1z−1)(1− r2z−1)(1− r3z−1) · · · (1− rMz−1)

(1− p1z−1)(1− p2z−2)(1− p3z−1) · · · (1− pNz−1)
. (9.19)

The roots of the polynomial in the numerator,{r1, . . . , rM}, are again called thezerosof the system function. The
roots of the polynomial in the denominator,{p1, . . . , pN} are called thepolesof the system function.K is again a gain
factor that determines the overall amplitude of the system’s output. As before, the zeros are complex values where
H(z) goes to zero. The poles, on the other hand, are complex values where the denominator goes to zero and thus the
system function goes to infinity10. Again, we typically assume that the filter coefficientsbk andak are real, so both
the poles and zeros of the system function must be either purely real or must appear in complex conjugate pairs.

Just as we could completely characterize an FIR filter by its gain and its zeros, we can completely characterize
an IIR filter by its gain, its zeros, and its poles. As in the FIR case, this is typically the most useful characterization
when designing IIR filters. As before, if the system function has zeros near the unit circle, then the filter magnitude
frequency response will be small at frequencies near the angles of these zeros. On the other hand, if there are poles
near the unit circle, then the magnitude frequency response will be be large at frequencies near the angles of these
poles. With FIR filters we could directly design filters to have nulls or dips at desired frequencies. Now, with IIR
filters, we can design peaks in the frequency response, as well as nulls. The specific procedure is the following.

1. Choose frequencieŝω1, ..., ω̂L at which the frequency response should contain a null, a dip, or a peak.

2. Choose zerosri = ρiejω̂i at those frequencies at which a null or a dip should occur, withρi = 1 or ρi ≈ 1, as
desired. For each sucĥωi 6= 0, choose also a zerorj that is the complex conjugate ofri. LetM be the total
number of zeros chosen.

3. Choose polespi = ρiejω̂i at those frequencies at which a peak should occur, withρi = 1 or ρi ≈ 1 as desired.
For each sucĥωi 6= 0 choose also a polepj that is the complex conjugate ofpi. LetN be the total number of
poles chosen.

4. Form the system functionH(z) = K (1−r1z
−1)×···×(1−rMz

−1)
(1−p1z−1)×···×(1−pNz−1)

, whereK is a gain that we also choose.

5. Cross multiply the factors ofH(z) found in the previous step and expressH(z) as the ratio of two polynomials
whose terms are powers ofz−1.

6. Identify the IIR filter coefficients{a0, . . . , aN , b0, . . . , bM}, which are simply the coefficients of the polynomials
found in the previous step, as shown in equation (9.18).

Poles and zeros at the origin and at infinity

Here, we have defined our system functions in terms of negative powers ofz. This is because our general forms for
FIR and IIR filters are defined in terms oftime delays, and multiplication of thez-transform of some signalX(z) by
z−1 is equivalent to a time delay of one sample. However, there are may be “hidden” poles and zeros when we express
a system function in this matter.

Consider first the system function for our FIR filter given by (9.9). If we try to evaluate this system function at
z = 0, we will immediately find that we are dividing by zero. Thus, there is actually a pole at the origin of this system

9This is a generalization of the terminology that the ratio of two integers is called arational number.
10Technically, because of a division by zero,H(z) is undefined at the location of a pole. However, the magnitude of the system function becomes

very large in the neighborhood of a pole.
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Figure 9.1: A pole-zero plot of an IIR filter.

function. To reveal such “hidden” poles and zeros, we express the system function in terms of positive powers ofz.
To do so, we multiply byz

M

zM
, which yields

H(z) =
b0z
M + b1z

M−1 + b2z
M−2 + b3z

M−3 + · · ·+ bM
zM

. (9.20)

By the Fundamental Theorem of Algebra, we know that the numerator polynomial hasM roots, and thus the system
hasM zeros. However, the denominator,zM , hasM roots as well, all atz = 0. This means that our causal FIR
system function hasM poles at the origin.

In some cases, like the previous example, we find extra poles at the origin. In other cases, we find extra zeros at
the origin. For example, the filtery[n] = y[n − 1] + x[n], hasH(z) = 1

1−z−1 =
z
z−1 , from which we see there is

one zero at the origin. In still other cases we find zeros at infinity11. For example, the filtery[n] = x[n − 1], has
H(z) = z−1 = 1

z
, from which we see that there is a zero at infinity. In still other cases, we find combinations of

the previous cases. We will call poles and zeros located at the origin or at infinitytrivial poles and zerosbecause they
do not affect the system’s magnitude frequency response12. In this laboratory, we will primarily be concerned with
nontrivial poles and zeros(those not at the origin or at infinity).

Note that there will always be the same number of poles and zeros in a linear time-invariant system, including both
trivial and nontrivial poles and zeros. The total number equals theM orN , whichever is larger. Such facts are useful
for checking to make sure that you have accounted for all poles and zeros in a system.

Note also that if one chooses filter coefficients such that the numerator and denominator contain an identical factor,
i.e. if ri = pj for somei andj, then these factors “cancel” each other, i.e. the filter is equivalent to a filter whose
system function has neither factor.

Pole-zero plots

It is often very useful to graphically display the locations of a system’s poles and zeros. The standard method for this
is thepole-zero plot. Figure 9.1 shows an example of a pole-zero plot. This is a two-dimensional plot of thez-plane
that shows the unit circle, the real and imaginary axes, and the position of the system’s poles and zeros. Zeros are

11A zero at infinity means that|H(z)| → 0 as|z| → ∞. It can be shown that a causal filter can never have a pole at infinity.
12Trivial poles and zerosdo affect the phase (and thus the delay or time shift) of a system.
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9.2.4 Graphical interpretation of the system function

typically marked with an ‘o’, while poles are indicated with an ‘x’. Sometimes, a location has multiple poles and
zeros. In this case, a number is marked next to that location to indicate how many poles or zeros exist there. Figure
9.1, for instance, shows four zeros (two conjugate pairs), two “trivial” poles at the origin, and one other conjugate pair
of poles. Recall that zeros and poles near the unit circle can be expected to have a strong influence on the magnitude
frequency response of the filter.

9.2.4 Graphical interpretation of the system function

If we take the magnitude ofH(z), we can think of|H(z)| as defining a (strictly positive)surfaceover thez-plane for
which theheightof the surface is given as a function of the complex numberz. Figure 9.2 shows an example of just
such a surface. This system function has two zeros (which form a complex conjugate pair) and two poles at the origin.
Notice that the unit circle is outlined on the surface|H(z)|. The height of the surface atz = ejω̂ (i.e., on the unit
circle) defines the magnitude of the frequency response,|H(ω̂)|, which is shown to the right of the surface.

On Figure 9.2, we can see two points where the surface|H(z)| goes to zero; these are the zeros of the system
function. Notice how the surface is “pulled down” in the vicinity of these zeros, as though it has been “tacked to
the ground” at the location of the zeros. Near the system’s zeros, the magnitude frequency response has a low point
because of the influence of the nearby zero. Also notice how the surface is “pushed up” at points far from the zeros;
this is another common characteristic of system function zeros. (Since the two poles in this figure are at the origin, they
have no effect on the system’s magnitude frequency response.) Thus, the magnitude frequency response has higher
gain at points far away from the zeros.

Figure 9.3 shows the surface|H(z)| as defined by a different system function. This system function has two poles
(which form a complex conjugate pair) and two zeros at the origin. Notice how the poles “push up” the surface near
them, like poles under a tent. The surface then typically “drapes” down away from the poles, getting lower at points
further from them. The magnitude frequency response here has a point of high gain in the vicinity of the poles. (Again,
the zeros in this system function are located at the origin, and thus do not affect the magnitude frequency response.)

Figure 9.4 shows the surface for a system function which has poles and zeros interacting on the surface. This
system function has four poles and four zeros. Notice the tendency of the poles and zeros to cancel the effects of one
another. If a pole and a zero coincide exactly, they will completely cancel. If, however, a pole and a zero are very
near one another but do not have exactly the same position, thez-plane surface must decrease in height from infinity
to zero quite rapidly. This behavior allows the design of filters with rapid transitions between high gain and low gain.

9.2.5 Poles and stability

System poles cause the system function to go to infinity at certain values ofz because we are dividing by zero. On
the one hand, this can have the desirable effect of raising the magnitude frequency response at certain frequencies. On
the the other hand, this can have some undesirable side effects. One somewhat significant problem is introduced if we
have a pole outside the unit circle. Consider the following filter, for instance:

y[n] = x[n] + 2y[n− 1] (9.21)

This filter has a single pole atz = 2. What is this system’s impulse response? If the input isx[n] = δ[n] andy[n] = 0
for n < 0, then atn = 0, y[n] = 1. Then, everyy[n] after that is equal to twice the value ofy[n − 1]. The value
of this impulse responsegrowsas time goes on! This system isunstable13. Unstable filters cause severe problems,
and so we wish to avoid them at all costs. As a general rule of thumb, you can keep your filters from being unstable
by keeping their poles strictly inside the unit circle. Note that the system’s zeros do not need to be inside the unit to
maintain stability.

13Technically, it isbounded input, bounded output(BIBO) unstable because the input has a limited magnitude but the output does not.
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Figure 9.2: (A) Thez-plane surface defined by the system functionH(z) = (1 − ejπ/4z−1)(1 − e−jπ/4z−1). (B)
The corresponding pole-zero plot. (C) The corresponding magnitude frequency response.
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Figure 9.3: (A) Thez-plane surface defined by the system functionH(z) = 1
(1−0.8ejπ/2z−1)(1−0.8e−jπ/2z−1)

. (B) The
corresponding pole-zero plot. (C) The corresponding magnitude frequency response.
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Figure 9.4: (A) Thez-plane surface for a complicated system function with four poles and four zeros. (B) The
corresponding pole-zero plot. (C) The corresponding magnitude frequency response.
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9.2.6 Filter design using manual pole-zero placement

9.2.6 Filter design using manual pole-zero placement

In this laboratory, we will explore a method of filter design in which we place poles and zeros on thez-plane in order to
match some target frequency response. You will be using a MATLAB graphical user interface to do this. The interface
allows you to place, delete, and move poles and zeros around thez-plane. The frequency response will be displayed
in another figure and will change dynamically as you move poles and zeros. To keep the filter’s coefficients real, you
will design by placing a pair of poles and zeros on thez-plane simultaneously.

The approach for this method depends somewhat on the type of filter that we wish to design. If we want an FIR
filter (i.e., a filter that has no poles), we need to use zeros to “pin down” the frequency response where it is low, and
allow the frequency response to be pushed upwards in regions where there are no zeros. Note that if we put a zero
right on the unit circle, we introduce null in the frequency response at that point. Conversely, the closer to the origin
that we place a zero, the less effect it will have on the frequency response (since it will begin to affect all points on
the unit circle roughly equally). You might use the example of the running average filter and bandpass filters (given in
Chapter 7 ofDSP First) as a prototype of how to use zeros to design FIR filters using zero placement.

If we wish to design an IIR filter (with both poles and zeros), it usually makes sense to start with the poles since
they typically affect the frequency response to a greater extent. If the frequency response that we are trying to match
has peaks on it, this suggests that we should place a pole somewhere near that peak (inside the unit circle). Then,
use zeros to try to pull down the frequency response where it is too high. As with zeros, poles near the origin have
relatively little effect on the system’s filter response.

Regardless of which type of filter we are designing, there are a couple of methodological points that should be
mentioned. First, moving a pole or zero affects the frequency response of the entire system. This means that we
cannot simply optimize the position of each pole-pair and zero-pair individually and expect to have a system which is
optimized overall. Instead, after adjusting the position of any pole-pair or zero-pair, we generally need to move many
of the remaining pairs to compensate for the changes. This means that filter design using manual pole-zero placement
is fundamentally an iterative design process.

Additionally, it is important that you consider the filter’s gain. Often we cannot adjust the overall magnitude of
the frequency response using just poles and zeros. Thus, to match the frequency response properly, you may need to
adjust the filter’s gain up or down. The pole-zero design interface that you will use in this Lab includes an edit box
where you can change the gain parameter. Alternately, by dragging the frequency response curve, you can change the
gain graphically. A related idea is that ofspectral slope. By having a pair of poles or zeros inside the unit circle and
near the real axis, we can adjust the overall “tilt” of the frequency response. As we move the pair to the right and left
on thez-plane, we can adjust the slope of the system’s frequency response up and down.

Note that there are automatic filter design methods which do not require manual placement of poles and zeros. In
Section 9.2.8 we discuss one such method.

9.2.7 Design of Standard Filter Types

Many of the filters that we wish to design and use belong to one of four standard types: lowpass, highpass, bandpass,
or bandstop. These filters are characterized by apassband(a band of frequencies which are relatively unaltered by
the filter) and astopband(a band of frequencies which are significantlyattenuated, or decreased in amplitude, by the
filter). The locations of the passband and stopband are what characterize the different filter types. For instance, a
lowpass filter has a passband which contains low frequencies and a stopband which contains high frequencies, while
a bandpass filter has a single passband that is surrounded by two stopband regions. Between the passband and the
stopband is atransition bandin which the filter’s frequency response changes from high to low. The location of the
transition band in frequency determines the filter’scutoff frequency. In this lab, we will specify the cutoff frequency
by using the two frequencies that bound the transition band.

When designing these types of filter, there are a number of different design goals that we may attempt to achieve.
For instance, we may wish to have a very flat frequency response in thepassbandof the filter. Unfortunately, it can
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Figure 9.5: An illustration of the various bands of a lowpass filter.

be difficult to achieve a flat frequency response over some frequency region. Instead, the frequency response usually
varies somewhat over that region; this variation is calledripple. Thus, one of design criteria may be to minimize
passband ripple. In this lab, we define the passband ripple as the (positive) decibel value of the ratio between the
maximum and minimum filter gains in the passband.

Another common goal is to try to minimize the gain in the stopband of the filter relative to the gain in the passband.
That is, we wish to maximize thestopband attenuation. In this lab, we define the stopband attenuation as the decibel
ratio between the maximum filter gain in the passband and the maximum filter gain in the stopband.

Figure 9.5 shows the passband, transition band, and stopband for a lowpass filter. The figure also illustrates the
the passband ripple and stopband attenuation. In Problem 2 of this assignment, you will design a lowpass filter to
maximize stopband attenuation.

9.2.8 Modeling Vowel Production

In Lab 8, we discussed some of the properties of vowel production in speech, but we did not examine the mechanisms
behind vowel production. In order to gain a better understanding of vowel production and how we can model it using
discrete-time filters, we need to introduce some theory.

Speech production is primarily governed by thelarynx (or voice box) and thevocal tract. Figure 9.6 shows a
diagram of the larynx and vocal tract. When we speak a vowel, the lungs push a stream of air through the larynx and
thevocal folds(commonly referred to as thevocal chords). Given the appropriate muscular tension, this stream of air
causes the vocal folds to vibrate14. This in turn creates a nearly periodic fluctuation in air pressure passing through
the larynx. The fundamental frequency of vocal fold vibration is typically around 100 Hz for males and 200 Hz for
females.

This fluctuating air stream then passes through the vocal tract, which is the airway leading from the larynx and
through the mouth to the lips. The positions of the tongue, lips, and jaw serve to shape the vocal tract, with different
positions creating different vowel sounds. The different sounds are produced as the vocal tract shapes the spectrum
of the pressure signal coming from the larynx. Depending upon the vocal tract configuration, different frequencies of
the spectrum are emphasized; from Lab 8, we know these frequencies asformants. When whispering a vowel, the
lungs push air through the larynx, but the vocal folds do not vibrate. In this case, the air pressure fluctuation is quite

14In fact, during normal production the vocal folds open and close completely on each cycle of the vibration.

150 The University of Michigan, All rights reserved



9.2.8 Modeling Vowel Production

Figure 9.6: A diagram showing the larynx and vocal tract.
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Figure 9.7: A block diagram of the source-filter model of speech production.

noise-like and generally is not periodic. Nevertheless, the tongue, lips and jaw shape the vocal tract just as before to
make the various vowel sounds.

Note that the above description is only accurate for vowels and so-calledvoiced consonantslike “m” and “n.”
Most consonant sounds are produced using the tongue, lips, and teeth rather than the vocal cords. We will not consider
consonants in this lab.

It is traditional to model speech production using asource-filter model. Figure 9.7 shows a block diagram of the
source-filter model. The first block is theglottal source, which takes as input a fundamental frequency and produces
a periodic signal (theglottal source signal) with the given fundamental frequency. The signal produced is typically
modeled as a periodic pulse train. To a first approximation, we can assume that spectrum of this pulse train is composed
of equal amplitude harmonics. The glottal source signal is meant to be analogous to the signal formed by the air
pressure fluctuations produced by the vibrating vocal cords. Note that to model whispering, the glottal source signal
can be modeled using random noise rather than a pulse train.

The second block of the source-filter model is the vocal tract filter. This is a discrete-time filter that mimics the
spectrum-shaping properties of the vocal tract. Since we are assuming a source signal with equal-amplitude harmonics,
the vocal tract filter provides the spectral envelope for our output signal. That is, when we filter the source signal with
fundamental frequencŷω0 radians per sample, thekth harmonic of the output signal will have an amplitude equal to
the filter’s magnitude frequency response evaluated atkω̂0. This is illustrated in Figure 9.8 which shows a particular
example. The magnitude spectrum of the glottal source signal is shown on top, the magnitude frequency response of
the vocal tract filter is shown in the center, and the magnitude spectrum of the output signal, which is the signal that
models the specific vowel signal. One may clearly see that, as desired, the envelope of the spectrum of the vowel
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Figure 9.8: A plot of the magnitude spectrum of a glottal source signal, the frequency response of a vocal tract filter,
and the magnitude spectrum of the output signal.

signal model matches the spectrum of the vocal tract filter.
In Problem 3 of this assignment, we will make such source-filter models for particular vowel signals, by measuring

the spectrum of the vowel signal and designing an IIR vocal tract filter whose frequency response approximates this
spectrum.

Typically, our vocal tract filter can have relatively few filter coefficients (i.e., approximately 10-20 coefficients).
Further, the acoustics of the vocal tract suggest that this filter should be IIR. Often, the vocal tract is modeled using
anall-pole filter which has no nontrivial zeros. This is because an acoustic passageway like the vocal tract primarily
affects a sound throughresonances. A resonance is a part of a system that tends to vibrate at a certainresonant
frequency, thus amplifying that frequency in signals passed through them. The feedback form of an IIR filter is a
direct implementation of resonance; this is how IIR filters are able to produce high gain at certain frequencies. Using
this simple model of speech production, it is possible to synthesize artificial vowels.

All-pole analysis and vowel classification

In the last lab, we explored some features for vowel classification that were based on two measures of spectral energy
in a vowel signal. The development of the source-filter model, however, suggests an acoustically motivated feature
for vowel classification. If we assume that the vocal tract can be modeled with a low-order discrete-time filter, then
the vocal tract filter captures all of the relevant information about which vowel has been produced. Variations such as
fundamental frequency and type of vowel production (i.e., voiced or whispered) are restricted to the glottal source and
can be neglected. Using samples of the frequency response of the vocal tract filter as features for vowel classification
has been shown to produce good classification results.

Fortunately, there are nice mathematical tools for deriving all-pole filter models automatically from a time-domain
waveform. These tools, fit the spectrum of a time-domain signal with poles in a least-squares sense. Note that these
tools work directly with the time-domain waveform rather than its spectrum; typically, they return the resultingak
feedback coefficients for a filter with those poles, rather than the locations of the poles themselves. We will explore

152 The University of Michigan, All rights reserved



9.3 Some MATLAB commands for this lab

these tools for all-pole analysis in the laboratory assignment, and we will compare classification performance using
features based on these models to the performance we achieved with our other feature sets from Lab 8.

9.3 SomeMATLAB commands for this lab

• Calculating the frequency response of IIR Filters:Previously we have usedfreqz to compute the frequency
response of FIR filters. We can use the same command to compute the frequency response of an IIR filter. If
our filter is defined by feedforward coefficientsbk stored in a vectorB and feedback coefficientsak stored in a
vectorA, we compute the frequency response at 256 points using the command:

>> [H,w] = freqz(B,A,256);

As with FIR filters, MATLAB ’s convention for thebk coefficients isB(1) = b0, B(2) = b1, . . ., B(M+1) = bM .
MATLAB ’s convention for theak coefficients isA(1) = 1, A(2) = −a1, . . ., A(N+1) = −aN . Both bk and
ak are given as defined in equation 9.18.H contains the frequency response andw contains the correspond-
ing discrete-time frequencies. Alternatively, we can compute the frequency response only at a desired set of
frequencies. For example, the command

>> [H,w] = freqz(B,A,[pi/4, pi/2, 3*pi/4]);

returns the frequency response of the filter at the frequenciesπ/4, π/2, and3π/4.

• Pole-Zero Place 3-D: In this laboratory, we will primarily be exploring filter design using manual pole-zero
placement. To help us do this, we will be using a MATLAB graphical user interface (GUI) calledPole-Zero
Place 3-D. Pole-Zero Place 3-Dallows you to place, move, and delete poles and zeros on thez-plane, and
provides immediate feedback by displaying the filter’s frequency response and the|H(z)| surface. Additionally,
it calculates some useful statistics for assessing the quality of a particular filter design.

To run this program you need to download two different files:pole_zero_place3d.m
andpole_zero_place3d.fig . To beginPole-Zero Place 3-D, simply execute15 the command

>> pole_zero_place3d;

Once the program starts, the GUI window shown in Figure 9.9 will appear. The axis in the upper left of the
window shows a portion of thez-plane with the unit circle. In the lower left is an axis that displays the frequency
response of the system. In the lower right is a 3-D axis which displays a 3-D graph of the|H(z)| surface16.

The interface allows you to do a wide variety of things.

1. To add a poles or zeros to thez-plane, click theAdd Zerosor Add Polesbutton and then click on thez-plane
plot in the upper left of the GUI. The state of thePlace paircheckbox determines whether a single (real)
pole or zero is added, or whether a conjugate pair is added.
Note that the program also adds the hidden poles and zeros that accompany nontrivial poles and zeros.
Specifically, for each zero that is added a pole is added at the origin, or if there is already at least one
zero at the origin, instead of adding a pole at the origin, one zero at the origin is removed, i.e. cancelled.
Moreover, for each pole that is added, a zero is added at the origin, or if there are already poles at the
origin, one pole is removed, i.e. cancelled. The system does not allow one to place zeros at infinity, and it
can be shown that zeros at infinity will not be induced by any other choices of poles or zeros.

15This program was designed to run using Windows systems running MATLAB 6 or higher; it will not work with previous versions of MATLAB .
It should work with Unix operating systems running MATLAB 6, but this has not been tested.

16This surface plot requires significant computation, and thus it can be toggled on and off using theView 3-Dcheckbox in the upper right.
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Figure 9.9: The GUI window forPole-Zero Place 3-D.

2. To move a real pole or zero (or a conjugate pair of complex poles or zeros), you must first select the
pole/zero by clicking on one member of the pair. Then, you can drag it around thez-plane, use the arrow
keys to move it, or move it to a particular location by inputting the magnitude and angle (in radians) in the
MagnitudeandAngleedit boxes.

3. To delete a pole or zero (or pair), select it and hit theDelete Poles/Zerosbutton. Again, the system will
maintain an equal number of poles and zeros by also removing poles or zeros from the origin as necessary.
This may also have the effect of no longer cancelling other poles and zeros, and thus the total number of
poles and zeros that appear at the origin will change.

4. To change the filter’s gain, you can either use theFilter Gain edit box or you can click-and-drag the blue
frequency response curve in the lower left.

5. To toggle between linear amplitude and decibel displays in the lower two plots, select the desired radio
button above theFilter Gain edit box.

6. To rotate the 3-D|H(z)| plot, simply click-and-drag the axes in the lower right of the GUI. To enable or
disable the 3-D plot, toggle theView 3-Dcheckbox in the upper right of the GUI

7. To begin with an initial filter configuration defined by the feedforward coefficients,B, and the feedback
coefficients,A, start the program with the command

>> pole_zero_place3d(B,A);

This is useful if you wish to start continue working on a design that you had previously saved. You may
set either of these parameters to empty ([] ) if you do not wish to specify the filter coefficients.

8. To print the GUI window, you can either use theCopy to Clipboardbutton to copy an image of the figure
into the clipboard17, or you can print the figure using thePrint GUI button.

9. To save your current design, use theExport Filter Coefsbutton. The feedforward and feedback coefficients
will be stored in the variablesB_pz andA_pz , respectively.

17Windows operating systems only
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10. To hear your filter’s response to periodic signal with equal-amplitude harmonics, press thePlay Sound
button. This is particularly useful when using the GUI to design vocal tract filters for vowel synthesis.

• Pole-Zero Place 3-D– Filter Matching Mode: In “filter matching mode,” you specify samples of a desired
transfer function at harmonically related frequencies and try to match that transfer function. The GUI plots a
red curve or stem plot along with the frequency response function; this is the response we wish to match. Two
edit boxes labeledLinear Matching ErrorandDecibel Matching Errorindicate how closely your filter matches
the desired frequency response. The matching error values are computed as the RMS error between the desired
frequency response and your filter design in both linear amplitude and in decibels.

To start the GUI in this mode, use the following command:

>> pole_zero_place3d(B,A,filter_gains,fund_frq);

Thefilter_gains are the values of the desired filter frequency response at harmonically related frequencies,
andfund_frq is the fundamental frequency (in radians per sample) of the harmonic series of frequencies at
which thefilter_gains are defined.

• Pole-Zero Place 3-D– Lowpass Design Mode:In “lowpass design mode,” you specify the maximum frequency
of the passband and the minimum frequency of the stopband (both in radians per sample). To start the GUI in
this mode, use the following command:

>> pole_zero_place3d(B,A,[pass_max,stop_min]);

In this mode, the GUI computes the passband ripple and the stopband attenuation of your lowpass filter design.
You can use these measures to evaluate your filter design. The figure in the lower right also displays the passband
and stopband of the filter, with appropriate minima and maxima.

• Converting between filter coefficients and zeros-poles:Given a set of filter coefficients, we often need to
determine the set of poles and zeros defined by those coefficients. Similarly, we often need to take a set of poles
and zeros and compute the corresponding filter coefficients. There are two MATLAB commands that help us do
this. First, if we have our filter coefficients stored in the vectorsB andA, we compute the poles and zeros using
the commands

>> zeros = roots(B);
>> poles = roots(A);

This is because the system zeros are simply the roots of the numerator polynomial whose coefficients are the
numbers inB, while the system zeros are simply the roots of the denominator polynomial whose coefficients are
the numbers inA. We can see this in equation 9.18. To convert back, use the commands

>> B = poly(zeros);
>> A = poly(poles);

Note that we loose the filter’s gain coefficient,K, with both of these conversions.

• Generating pole-zero plots:Frequently, we’d like to use MATLAB to make a pole-zero plot for a filter. If our
filter is defined by feedforward coefficientsB and feedback coefficientsA (both row vectors), we can generate a
pole-zero plot using the command:

>> zplane(B,A);
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Alternately, if we have a list of poles,p, and a list of zeros,z , (both column vectors) we can use the following
command:

>> zplane(z,p);

An example of a pole-zero plot resulting from this command is shown in Figure 9.1.

• Automatic all-pole modeling: Using the MATLAB commandaryule , we can compute an all-pole filter model
for a discrete-time signal. That isaryule automatically finds an all-pole filter whose magnitude frequency
response that in some sense matches the magnitude frequency response of the signal. If signal is given by
signal , the command

>> A = aryule(signal,N);

returns the filter feedback coefficientsak as a vectorA. The parameterN indicates how many poles we wish
to use in our filter model. Once we haveA, we can compute the filter’s frequency response at 256 points using
freqz as

>> [H,w] = freqz(1,A,256);

9.4 Demonstrations in the Lab Section

• Thez-transform, system functions, and IIR filters

• The system function “surface,”|H(z)|

• UsingPole-Zero Place 3-Dfor filter design

• Vocal tract modeling

9.5 Laboratory Assignment

1. (Fit an FIR filter’s frequency response.) Download the filespole_zero_place3d.m ,
pole_zero_place3d.fig , andlab9_data.mat . In this problem, you will get familiar with thePole-
Zero Place 3-Dprogram for filter design using pole-zero placement.

In lab9_data , the variableFIR_fr contains samples of the frequency response for a simple FIR filter with
six zeros. ExecutePole-Zero Place 3-Dusing the command

>> pole_zero_place3d([],[],FIR_fr,2*pi/8192);

Use the GUI to find an FIR filter with six nontrivial zeros that matches the frequency response of the original
filter. You should be able to get the linear matching error to be less than 0.1. (Hint: The original filter had all six
of its zeros inside the unit circle, so yours should as well.)

• [6] Include the GUI window with your matching filter in your report. In this and the following problems,
make sure that it is possible to read the filter evaluation scores on your printout. (Note: The easiest way to
include the GUI window is to use theCopy to Clipboardbutton on a Windows machine. After hitting the
button, wait for the GUI to flash white and then paste the result into your report.)
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• [2] What are the filter coefficientsbk andak for your filter?

• [2] Where are the zeros on thez-plane? Give your answers in rectangular form.

2. (Design a lowpass filter.) In this problem, we will use the “lowpass design mode” ofPole-Zero Place 3-D
to design some lowpass filters, as described in Section 9.2.7. For the various parts of this problem, use the
command

>> pole_zero_place3d([],[],2*pi*[1500 2000]/8192);

This sets the filter transition band to 1500 Hz to 2000 Hz if we assume a sampling rate of 8192 samples per
second.

(a) (Design an FIR lowpass filter to maximize stopband attenuation.) First, let’s see what we can do with just
zeros (that is, with FIR filters). Using only six nontrivial zeros (i.e., three zero pairs), design a lowpass
filter with a stopband attenuation of at least 30 dB. (Remember, we want our stopband attenuation to be as
large as possible). For now, take note of your filter’s passband ripple, but don’t worry about minimizing it.

• [8] Include the GUI window with your matching filter in your report.

• [2] What are the filter coefficientsbk andak for your filter?

• [2] Where are the zeros on thez-plane? Give your answers in rectangular form.

Food for thought: Using just zeros, try to find a way to minimize the passband ripple. What does this do to
your stopband attenuation? Try this with more zeros, but don’t use any poles.

(b) (Design an IIR lowpass filter to maximize stopband attenuation.) There are two primary benefits to the
use of IIR filters. First, it is very easy to get very high gain at certain frequencies. This lets us design a
lowpass filter with very high stopband attenuation. Using a single pair of nontrivial poles, design a lowpass
filter that has a stopband attenuation greater than 60 dB. Use the same transition band as in the previous
problem. Again, you should take note of the passband ripple, but don’t worry about minimizing it.

• [4] Include the GUI window with your matching filter in your report.

• [2] What are the filter coefficientsbk andak for your filter?

• [2] Where are the poles on thez-plane? Give your answers in rectangular form.

(c) (Design an IIR lowpass filter for both high stobpand attenuation and low ripple.) The second benefit of
IIR filters is the ability to achieve fast transitions between high gain and low gain. Among other things,
this allows us to transition between the passband and stopband more quickly, which in turn allows us to
achieve relatively high stopband attenuation with low passband ripple.

Once again using the same transition band, design a lowpass filter with a passband ripple of less than 2
dB and a stopband attenuation of at least 20dB. You may use as many poles and zeros as you wish, but it
is possible to meet these criteria with only two poles and four zeros. (Hint: use decibel mode to help you
increase the stopband attenuation, and linear mode to help you decrease the passband ripple.)

• [12] Include the GUI window with your matching filter in your report.

• [2] What are the filter coefficientsbk andak for your filter?

• [2] Where are the poles and zeros on thez-plane? Give your answers in rectangular form.

Food for thought: For a more interesting challenge, design a lowpass filter with a passband ripple of less
than 1 dB and a stopband attenuation of 60 dB. This can be done with six poles and six zeros, but you
might want to use more than this.
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3. (Matching a vowel signal’s spectrum using pole-zero placement.)lab9_data.mat contains the variable
vowel2 , which is a short vowel signal sampled at 8192 Hz. In this problem we will find a filter model of the
vocal tract used to produce this vowel.

(a) First, let’s examine the signal itself.

• [2] Usesoundsc to listen tovowel2 . What vowel does this signal represent?

• [4] As a measure of the spectrum, plot the magnitude DFT coefficients for this signal in decibels
versus frequency in Hertz. Use only the first half of the DFT coefficients, where the maximum value
on the x-axis is one half of the sampling rate.

• [2] From this plot, estimate the fundamental frequency of the vowel signal in Hertz.

(b) (Design a vocal tract filter with both poles and zeros.)

lab9_data.mat contains the variablesvowel2_amps , which contains the amplitudes of the harmon-
ics that make upvowel2 . We’ll use the amplitudes to find a vocal tract filter for this vowel. StartPole-Zero
Place 3-Dusing the command

>> pole_zero_place3d([],[],vowel2_amps,2*pi*frq/8192);

wherefrq is the fundamental frequency (in Hz) that you estimated. (Hint: The red stems should go
all the way across the frequency response plot. Also, there should be one stem for each element of
vowel2_amps . If not, you have probably estimated your fundamental frequency incorrectly.)

Set the GUI to “decibel plot” and find a filter with six nontrivial poles and six nontrivial zeros that makes
the decibel matching error as small as possible. You should be able to get the decibel error below 4.2. (It
is possible to achieve a decibel error of 3.65.)

• [8] Include the GUI window with your matching filter in your report.

• [2] What are the filter coefficientsbk andak for your filter?

• [2] Where are the poles and zeros on thez-plane? Give your answers in rectangular form.

(c) (Design a vocal tract filter with only poles and zeros.) Now, repeat the above for a filter with 10 poles
nontrivial and no nontrivial zeros (except for those at the origin). You should be able to achieve a decibel
matching error below 2.6. (It is possible to achieve a decibel error of 2.1.)

• [8] Include the GUI window with your matching filter in your report.

• [2] What are the filter coefficientsbk andak for your filter?

• [2] Where are the poles on thez-plane? Give your answers in rectangular form.

If you are working on a computer with audio capability, you should use thePlay Soundbutton to listen to a
synthesis of the vowel signal. Note that the all-pole model produces less error with fewer total coefficients.
This suggests that all-pole filters are more appropriate for vocal tract modeling.

4. (All-pole modeling and classification) In this problem, we’ll look at an automatically generated all-pole model
of vowel2 , and we’ll see how we can use this model to help us improve our vowel classifier performance from
Lab 8.

(a) (Automatically generate an all-pole filter model.) Usearyule to compute an all-pole model forvowel2
with 10 poles.

• [2] What are the resulting feedback coefficients?

• [2] Make a pole-zero plot of the resulting filter.
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• [4] Use freqz to plot the frequency response of this filter and the frequency response of the filter
you found in Problem 3c in two subplots of the same figure. Display the two frequency responses
in decibels. (Note: The two frequency responses in decibels may be offset by some constant, which
corresponds to a scaling of the original spectrum.)

(b) (Construct and evaluate the vowel classifier.) Here, we’ll consider 16 samples of the frequency response
of an all-pole filter to be a potential feature vector for vowel classification.lab9_data.mat contains
five matrices which contain all-pole feature vectors for the same vowel instances we examined in Lab 8.
They areoo_ap , oh_ap , ah_ap , ae_ap , andee_ap .

• [5] As you did in Lab 8, compute the mean all-pole feature vectors for each of the five vowel classes.
Make sure you label which mean vector belongs with which class.

• [5] Combine the above vectors into a matrix of mean feature vectors. Then, use the function (from
Lab 8)
confusion_matrix.m to calculate the confusion matrix for the all-pole features. As you did in
Lab 8, use the vowel order “oo,” “oh,” “ah,” “ae,” and “ee”. (If you did not complete your function
confusion_matrix in Lab 8, use the compiled functionconfusion_matrix_demo.dll for
this problem.)

• [4] Compare this confusion matrix with the two confusion matrices that you computed in Lab 8. Is
the performance of the classifier better with this feature class? Note any similarities between the three
confusion matrices.

5. On the front page of your report, please provide an estimate of the average amount of time spent outside of lab
by each member of the group.
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