EECS 210 W97 Section#2 Final Exam Solutions

(20 points) Winick

Consider the circuit shown below which contains a voltage controlled current source.

.. $\sqrt{2} = \sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ Find the voltage at node A.

$$\therefore \quad \forall A = \frac{\forall}{1+j} = \frac{\forall}{\sqrt{2}} \frac{1}{\sqrt{2}} - 45^{\circ}$$

$$= 1 \angle 0^{\circ}$$

Exam Mean = 64.7%	
0-10	3
11-20	3
21-30	3
31-40	11
41-50	10
51-60	9
61-70	10
71-80	11
0.0.	1.4

total= 94

(20 points) Problem # 2

When an arbitrary voltage \underline{V} volts (at $\omega=100$ rad/s) is applied to the two terminal circuit shown below a current \underline{I} amperes flows.

It is experimentally found that the relationship between \underline{V} and \underline{I} is given by

$$Y = (5 + j5) + I(10 + j5)$$

Draw an equivalent two terminal circuit which contains only one independent voltage source (\underline{Y}_S) , one resistor (R) and one inductor (L). Specify the values of \underline{Y}_S , R and L.

..
$$V_{oe} = (5+j5)$$
 $I_{sc} = -\frac{(5+j5)}{10+j5}$
 $Z_{T} = -\frac{V_{oc}}{I_{sc}} = 10+j5$

(20 points) Problem # 3

The frequency transfer function, $H(\omega)$, of a filter is given by the Bode plots shown on the next page.

2 pts.

bond stop or not eh

q pts. (b) If the signal $x(t) = 0.1\cos(100t+5^{\circ}) + 0.1\cos(3100t+53^{\circ}) + 0.1585\cos(8x10^{5}t+47^{\circ})$ is input to this filter, then estimate the filter output y(t) using the Bode plot.

Y(t) = cos(100t) + cos(3100t) - sin(8x105t)

|H(100)| = 20 dB (10), LH(100) = ~-5° (5.08°) |H(3100)| = 10 dB (3.16), LH(3100) = -53° (-53.29°) $|H(8\times10^5)| = |6 dB (6.31), LH(8\times10^5) = 43° (43.57°$ $|H(8\times10^5)| = |6 dB (6.31), H(8), from the asymptotic$

· Bode plot.

 $\frac{(1+\frac{9}{10^4})(1+\frac{9}{10^5})}{(1+\frac{9}{10^4})(1+\frac{9}{10^5})}$

Bode Plots for Problem # 3

(20 points)

Problem # 4

 $\frac{\underline{V_A} - \underline{V_i}}{R} + (\underline{V_A} - \underline{V_0}) sc + (\underline{V_A} - \underline{V_0}) = 0$ (1)

in ots.

(b) Express the node voltage at node A in terms of $\underline{\mathtt{V}}_{\scriptscriptstyle O}$ first computing $\underline{\mathtt{I}}_1.$

$$\underline{\mathbf{L}}_1 = \underline{\mathbf{V}}_0 \, \mathbf{S} \, \mathbf{C}$$
 (3)

(c) Combine your results of parts (a) and (b) above to show that the system transfer function is given by

$$H(s) = \frac{1}{as^2 + bs + 1} = \frac{1}{(1 + RCs)^2}$$

Find the values of a and b in terms of R and C.

$$a = (Rc)^2$$
 $b = 2Rc$

5pts (d) For R=1 Ω and C=1F, H(s) is given by total H(s) = $\frac{1}{(1+s)^2}$

Sketch the asymptotic Bode plot(magnitude only) of this H(s) on page 12. What type of filter is this?

5pts (e) When R=1 Ω and C=1F, the 3 dB cut-off frequency $\omega_{\rm C}$ (i.e., $|H(\omega_{\rm C})|=0.707|H(0)|$) is 0.644 rad/s. Frequency and impedance scaling are used to transform this circuit into a new low-pass filter with C=10 nF and 3 dB cut-off frequency 6440 rad/s. Find the new value for R.

R= $10k\Omega$ $K_{F} = 6440/.644 = 104$ $C^{new} = C^{old}/K_{F}K_{m} \longrightarrow K_{m} = 104$ $C^{new} = C^{old}/K_{F}K_{m} \longrightarrow K_{m} = 104$ $C^{new} = K_{m}R_{old} \longrightarrow R^{new} = 10K\Omega$

Work Area For Problem # 4 (continued on page 13)

Aysmptotic Bode Plot (Magnitude) for Problem #4

Consider the circuit shown below.

8 pts (a). Compute the power factor seen by the source. Specify whether it is leading or lagging.

Z= 1.5+j 2-.5j = 1.5(1+j)

$$\angle pf = tan^{-1} - \frac{1.5}{1.5} = -45^{\circ}$$

 $\therefore pf = 0.707 | agging$

Hpts. (b). Find the (i) apparent power, (ii) complex power, and (iii) real power delivered by the source. Don't forget to include the units.

 $I = V/Z = 1.5V2L45^{\circ}/1.5V2L45^{\circ} = 1.20^{\circ}$ A apparent power = $\frac{1}{2}IIIIVI = \frac{1}{2}(1)(1.5\sqrt{2}) = 1.5/\sqrt{2}$ VA

(c). A second load is connected in parallel with the series RLC combination. This load dissipates 1.25 W and has a power factor of 0.9806 lagging. Compute the power factor seen by the source with these two loads connected in parallel. Specify whether it is leading or lagging.

$$S_2 = 1.25 + j Q_2$$

 $LpS_2^{\pm} - cos^{-1} [.9806] = -11.304^{\circ}$
 $= +an^{-1} [-Q_2/_{1.25}]$

Stat =
$$S_1 + S_2 = P_{tot} + j P_{tot}$$
 14 ... $Q_2 = .25 \text{ VAR}$
= $(.75 + j .75) + (1.25 + j .25)$
= $2 + j + VA \implies \angle P_{tot} = + a_n (1/2) = -26.57^\circ$
= $2 + j + VA \implies \angle P_{tot} = + a_n (1/2) = -26.57^\circ$