EECS210 HWK 12

1. The following circuit is used to reject two unwanted signal frequencies. To simplify calculations let $s=j\omega$.

- a Find the transfer function $H(s) = \frac{V_o}{V_o}$.
- b Make a Bode plot (magnitude & phase, use the Matlab command bode)
- c What are the two rejected frequencies?
- 2. Make a pole/zero for the following transfer function and sketch the asymptotic Bode plot.

$$H(s) = \frac{10s + 400}{s^3 + 10s^2 + 100s}$$

3. Consider the following circuit

- (a) Derive the system transfer function $H(s) = \frac{V_2}{V_1}$. What kind of filter is this?
- (b) Scale the circuit to obtain a high pass filter with a 3dB cutoff frequency $\omega_c = 10 \text{ rad/s} (|H(\omega_c)| = 0.707|H(\infty)|)$ using a $0.02\mu\text{F}$ capacitors to replace the $1\mu\text{F}$ capacitors.
- 4. Consider the following circuit

- (a) Write node equations at nodes A,B and C.
- (b) Derive the transfer function $H(s) = \frac{V_{out}}{V_{in}}$.
- (c) Show that the circuit acts as a bandstop filter with a center frequency of 1 rad/s & a Q of 1.
- (d) Scale the circuit to obtain a center frequency of 60Hz using capacitors of 1 and 2nF in place of 1F and 2F.
- 5. Consider the following circuit.

- (a) Derive the transfer function for this bandpass filter.
- (b) Compute its center frequency and 3dB full-width bandwidth.
- (c) The filter is to have a center frequency of 500Hz & a 3dB full-width bandwidth of 50Hz. Find R_1 , R_2 if C=10nF. What is the filter gain at ω_0 ?
- 6. (a) Construct an asymptotic Bode plot (magnitude & phase) for the system transfer function

$$H(s) = \frac{10(1+0.1s)(1+0.01s)}{(1+s)}$$

- (b) Plot the exact Bode plots using the Matlab command bode.
- 7. Determine the system transfer function associated with the following Bode plot.

