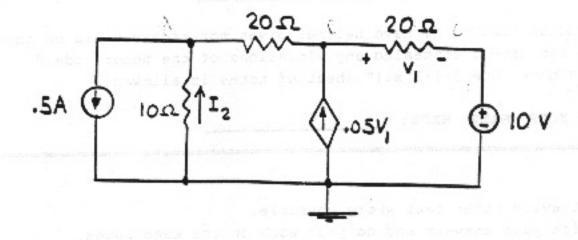
NAME ((Print)

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Closed book. One 8-1/2"xl1" sheet of notes is allowed.

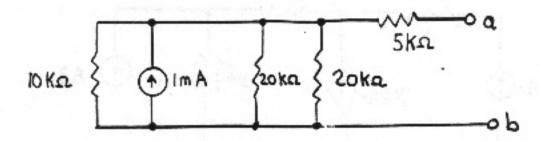

SIGN YOUR NAME HERE:

- Sit every other seat where possible.
- 2. Write your answers and do your work on the exam pages.
- 3. You will get no credit if you don't show your work on the exam.
- 4. There are four problems and each is worth 25 points.
- 5. Don't forget to give the units for your answers.

Good Luck!

DO NOT TURN THIS PAGE OVER UNTIL TOLD TO DO SO.

Consider the following circuit.

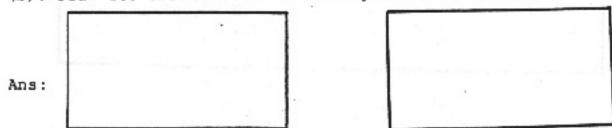

- (a). Label the circuit node on the above figure using the letters A,B,C,...
- (b). Write the node equations for this circuit.

			-		
Ans:	ton.				90

(c). Solve the node equations to determine the current I2.

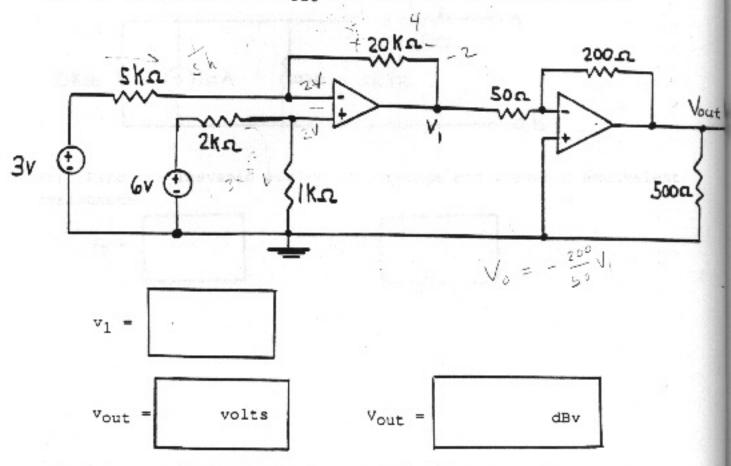
12 =	

Consider the following circuit.



(a). Find its Thevenin equivalent voltage and Thevenin equivalent resistance.

$$V_{T} =$$


$$R_{T} -$$

(b). Draw its Thevenin and Norton equivalent circuits.

(c). A load resistor with resistance $R_{\rm L}$ Ω is connected across the terminals a,b. Find the value of $R_{\rm L}$ such that maximum power is delivered to the load. Find the maximum power $P_{\rm max}$.

Find v_1 and v_{out} for the following operational amplifier circuit. Express your answer for v_{out} in both units of volts and dBv.

A signal x(t) can be represented by the following sum

$$x(t) = 1 + \sum_{n=1}^{\infty} \frac{1}{n^2} \cos(2000\pi nt)$$

(a).	What	is	the	fourth	harmonic	fequency	of	this	signal?
------	------	----	-----	--------	----------	----------	----	------	---------

ans:

(b). The signal x(t) is put through a filter, and the output of the filter is given by

$$y(t) = 1 + .5\cos(2000\pi t) + \frac{1}{90}\cos(6000\pi t + \pi/3)$$

Determine the values of the magnitude and phase transfer functions evaluated at a frequency of 3 KHz.

(c) Find the output of this same filter when the input gnal is $\sin(2000\pi t) + 4\cos(4000\pi t) + 6\sin(6000\pi t + \pi/4) + \cos(12000\pi t)$

Ans: