EECS 210 Section 2 – Lecture Summaries
Lecture 21, Friday, February 23, 2001

• Energy Storage Devices
 ➢ Inductor, \(v = L \frac{di}{dt} \) (passive sign convention)
 ✓ Required \(v \) increases with \(L \) and with frequency
 ✓ Current must be continuous
 ✓ Inductors in series add
 ✓ Inductors in parallel look like \(L_{eq} = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + ...} \)
 ➢ Inductors – short to dc, open as \(f \to \infty \)
 ➢ Capacitors – open to dc, short as \(f \to \infty \)
 ➢ Across inductors, voltage leads current by \(90^0 \)
 ➢ Across capacitors, current leads voltage by \(90^0 \)
 ➢ Practical inductors typically have in-line resistance
 ➢ Practical capacitors can be near ideal