EECS 210 Section 2 - Lecture Summaries Lecture 28, Monday, March 19, 2001

- To convert 3-terminal Δ (or Π) to 3-terminal Y (or T)
Δ (or π)
Y (or T)

$>$ Remember symmetry

$$
\begin{aligned}
& \mathrm{z}_{1}=\frac{\mathrm{z}_{\mathrm{b}} \mathrm{z}_{\mathrm{c}}}{\mathrm{z}_{\mathrm{a}}+\mathrm{z}_{\mathrm{b}}+\mathrm{z}_{\mathrm{c}}} \\
& \mathrm{z}_{2}=\frac{\mathrm{z}_{\mathrm{c}} \mathrm{z}_{\mathrm{a}}}{\mathrm{z}_{\mathrm{a}}+\mathrm{z}_{\mathrm{b}}+\mathrm{z}_{\mathrm{c}}} \\
& \mathrm{z}_{3}=\frac{\mathrm{z}_{\mathrm{a}} \mathrm{z}_{\mathrm{b}}}{\mathrm{z}_{\mathrm{a}}+\mathrm{z}_{\mathrm{b}}+\mathrm{z}_{\mathrm{c}}}
\end{aligned}
$$

- Series LC circuit is a short at resonance
- Parallel LC circuit is an open at resonance

