EECS 210 Section 2 - Lecture Summaries Lecture 30, Friday, March 23, 2001

$>$ Complex power is $\hat{\mathbf{P}}=\frac{\mathbf{1}}{\mathbf{2}} \hat{\mathbf{I}} \hat{}^{*}$ in Volt-Amperes (VA)

- Complex power is conserved around a circuit
$>$ Average power is $\mathbf{P}_{\mathrm{Av}, \mathbf{i}}=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{\operatorname { R e }}\left\{\hat{\mathbf{V}}^{\mathbf{1}}\right\}$ in Watts (W)
$>$ Average power is conserved around a circuit
$>$ Reactive power is $\mathbf{Q}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{I m}\left\{\hat{\mathbf{V} I} \hat{I}^{*}\right\}$ in Volt-Amperes Reactive (VAR)
\checkmark Reactive power is conserved around a circuit
$>$ Apparent power is $\mathbf{P}_{\text {apparent }}=|\hat{\mathbf{P}}|$ in Volt-Amperes (VA)
- Apparent power is not conserved around a circuit
$>$ For fixed source impedance, maximum power transfer occurs when $\mathbf{Z}_{\text {load }}=\mathbf{Z}_{\text {source }}^{*}$

