O ~J O Ul i WDN B

OO OO OOV UTUTUIUTUIUTOTOI T RSB DDA DRWWWWWWWWWWNNNNONMNMNNNMNNNMNNNMNNMNNRRERRERRRR R P
O JOUTDd WNROWOMJAUD WNRPOWWOWMTOAUE WNRPOWOWMUAOAUR WNRE OWWOWTJOAUPR WNRE OWOTJOU B WNRE oW

module fourBitAdder(a,b,s,co):

input wire[3:0]a,b; //declare two four bit inputs a and b
output wire [3:0]s; //declare one four bit output s
output wire co; //a one bit output for the carry out

wire co0,col,co2; //declare three intermediate wires that
//will connect the output of one module
//to the input of another module.
/*
SYNTAX NOTE:
if I have a module that has the following declaration
testModule (inl,in2,outl);//all 1 bit width
and the following code in another module:
wire a,b,c;
testModule one(.inl(a), .in2(b), .outl(c)) ;

it will create a module that uses a for the input to inl
b for the input to in2
c for the output of outl

meaning the syntax is:
.port_on_module_you_are_ connecting_to(wire_in_current_module)

*/

//create our first half adder co0O is a output for carryout that will
//serve as the carryin for the first fulladder (fal)
halfAdder haO(.a(al[0]), .b(b[0]),.s(s[0]),.co(co0));

//create the first full adder(fal) that takes in co0 as the carry in bit
//and has col as the carryoutbit which feeds intofa?2
fullAdder fal(.a(alll),.b(b[1l]),.ci(co0),.co(col),.s(s[1]1));

//create the second full adder (fa2) that takes in col as the carry
//in bit from fal and has co2 as teh carry out bit which feeds into fa3

fullAdder fa2(.a(al2]),.b(bl2]),.ci(col),.co(co2),.s(sl2]1));

//create the last full adder(fa3) that takes in co2 as its carry in bit
//from fa2 and then outputs the final sum bit and the fourBitAdders carryout
fullAdder fa3(.a(al3]),.b(b[3]),.ci(co2),.co(co),.s(s[3]1));

endmodule

module halfAdder(a,b,s,co);//halfAdder declaration
input wire a,b;//input of a and b
output wire s,co;//outputs

//output logic that is found in your book!

assign s = ahrb;

assign co = aé&b;

endmodule

module fullAdder(a,b,ci, co, s);//fullAdder declaration
input wire a, b, ci;//full adder also has a carry in bit

output wire co, s; //outputs

//output logic that is found in your book!

assign s = aAbAci;
assign co = (b&ci) | (a&ci) | (a&b) ;
endmodule

