module fourBitAdder(a, b, s, co);
 input wire [3:0] a, b; //Declare two four bit inputs a and b
 output wire [3:0] s; //Declare one four bit output s
 output wire co; //a one bit output for the carry out
 wire co0, co1, co2; //declare three intermediate wires that
 //will connect the output of one module
 //to the input of another module.
 //SYNTAX NOTE:
 // if I have a module that has the following declaration
 //testModule(int, int, out); //all 1 bit width
 //and the following code in another module:
 // wire a, b, c;
 // testModule one(.in1(a), .in2(b), .out1(c));
 // it will create a module that uses a for the input to int
 //b for the input to int
 //c for the output of out1
 //meaning the syntax is:
 //port_on_module_you_are_connecting_to(wire_in_current_module)

 //create our first half adder co0 is a output for carryout that will
 //serve as the carryin for the first fulladder(fa1)
 halfAdder ha0 (.a(a[0]), .b(b[0]), .s(s[0]), .co(co0));

 //create the first full adder(fa1) that takes in co0 as the carry in bit
 //and has co1 as the carryout bit which feeds into fa2
 fullAdder fa1 (.a(a[1]), .b(b[1]), .ci(co0), .co(co1), .s(s[1]));

 //create the second full adder (fa2) that takes in co1 as the carry
 //in bit from fa1 and has co2 as the carry out bit which feeds into fa3
 fullAdder fa2 (.a(a[2]), .b(b[2]), .ci(co1), .co(co2), .s(s[2]));

 //create the last full adder (fa3) that takes in co2 as its carry in bit
 //and then outputs the final sum bit and the fourBitAdders carryout
 fullAdder fa3 (.a(a[3]), .b(b[3]), .ci(co2), .co(co), .s(s[3]));
endmodule

module halfAdder(a, b, s, co);
 //halfAdder declaration
 input wire a, b; //input of a and b
 output wire s, co; //outputs

 //output logic that is found in your book!
 assign s = a ^ b;
 assign co = a & b;
endmodule

module fullAdder(a, b, ci, s, co);
 //fullAdder declaration
 input wire a, b, ci; //full adder also has a carry in bit
 output wire s, co; //outputs

 //output logic that is found in your book!
 assign s = a ^ b ^ ci;
 assign co = (a & ci) | (b & ci) | (a & b);