
1

Advanced Verilog

EECS 270 v10/23/06

Continuous Assignments
review

• Continuously assigns right side of expression
to left side.

• Limited to basic Boolean and ? operators. For
example a 2:1 mux:
– ? operator

assign D = (A= =1) ? B : C; // if A then D = B else D = C;

– Boolean operators
assign D = (B & A) | (C & ~A); // if A then D = B else D = C;

2

Procedural Assignments

• Executes a procedure allowing for more powerful
constructs such as if-then-else and case statement.

• For example 2:1 mux:
– if-then-else

if (A) then D = B else D = C;

– case
case(A)

1'b1 : D = B;
1'b0 : D = C;
endcase

This is obviously much
easier to implement and
read then Boolean
expressions!!

Always Block

• An always block is an example of a
procedure.

• The procedure executes a set of assignments
when a defined set of inputs change.

3

2:1 mux Always Block
Module mux_2_1(a, b, out, sel);

input a, b, sel;
output out;

reg out;

always @ (a or b or sel)

begin
if (sel) out = a;
else out = b;

end

endmodule

Declare Module and IO as before.

All data types in always blocks must be
declared as a ‘reg’ type.

This is required even if the data type is for
combinational logic.

The always block ‘executes’ whenever
signals named in the sensitivity list
change.

Literally: always execute at a or
b or sel.
Sensitivity list should include
conditional (sel) and right side (a, b)
assignment variables.

As Easier Way to Implement the
Sensitivity List

• Recent versions of Verilog provides a means to
implement the sensitivity list without explicitly
listing each potential variable.

• Instead of listing variables as in the previous
example

always @ (a or b or sel)
Simply use

always @*
The * operator will automatically
identify all sensitive variables.

4

Blocking vs Non-Blocking Assignments
• Blocking (=) and non-blocking (<=) assignments are provided to

control the execution order within an always block.

• Blocking assignments literally block the execution of the next
statement until the current statement is executed.
– Consequently, blocking assignments result in ordered

statement execution.
For example:

assume a = b = 0 initially;
a = 1; //executed first
b = a; //executed second
then a = 1, b = 1 after ordered execution

Blocking vs Non-Blocking Cont
• Non-blocking assignments literally do not block the execution of the next

statements. The right side of all statements are determined first, then the left
sides are assigned together.
– Consequently, non-blocking assignments result in simultaneous or

parallel statement execution.

For example:

assume a = b = 0 initially;
a <= 1;
b <= a;
then a = 1, b = 0 after parallel execution

Execute together (in parallel)

Result is different from ordered exec!!! Does not preserve logic flow

5

To Block or Not to Block ?

• Ordered execution mimics the inherent logic flow of
combinational logic.

• Hence blocking assignments generally work better for
combinational logic.

• For example:

x = a & b y = x | b

logic flow

To Block or Not to Block ? cont
Module blocking(a,b,c,x,y);

input a,b,c;
output x,y;
reg x,y;
always @*
begin
x = a & b;
y = x | c;
end

endmodule

Module nonblocking(a,b,c,x,y);
input a,b,c;
output x,y;
reg x,y;
always @*
begin
x <= a & b;
y <= x | c;
end

endmodule

00010y = x | c; //make assignment
10010x = a & b; //make assignment
11010a changes always block execs
11011Initial values
yxcbaBlocking behavior

11010y = x | c; //x not passed from here
10010make x, y assignments

11010x = a & b;
11010a changes always block execs
11011Initial values
yxcbaNon-blocking behavior

non-blocking behavior does not preserve
logic flow!!

6

Sequential Logic

• Can be generalized as a series of
combinational blocks with registers to hold
results.

comb logic register comb logic register
inputs inputsresults results

clk
Results of each stage are stored (latched) in a
register (D-Flip-Flops) by a common clock

more
stages

Sequential Example

• Shift registers are used to implement
multiplication/division and other functions.

• Consider a simple 2-bit “right” shift:

common
clock

No combinational logic
for simple shift, just
simple pass thru

100rising
edge

011rising
edge

001initial

Q1Q0D0clk

7

Sequential Example Cont 1

• Notice that the inputs of each stage are
“evaluated” then latched into the registers at
each rising clock edge.

inputs evaluated
between rising
clk edges

results latched on rising
clk edge

Sequential Example Cont 2

• Because the shift logic evaluates inputs in parallel and
latches result on a rising clk edge, a non-blocking always
procedure sensitive to a rising clock can be used to
implement.

Sensitive to rising clock edge. Note that
in this case we must explicitly specify
sensitivity to the rising edge of clock.
Simply using the * will not work.

process statements in parallel

8

Sequential Example Cont 3
• What if we used blocking statements instead.

Notice the following results:

The logic statements are
simplified to Q0 = Q1 =
D0. Logic is evaluated on
rising edge of clk. Verilog
is synthesized as one stage
logic.

Summary

• Combinational logic: Use blocking
statements with always blocks with the *
operator to mimic logic flow of
combinational logic.

• Sequential logic: Use non-blocking
statements with always blocks sensitive to
rising clock edge to mimic parallel
sequential logic.

9

Modeling Finite State Machines
with Verilog

• Finite State Machines can be modeled with
three general functions:
1. Next State Logic (combinational)

Combinational logic that determines next state based on
current state and inputs.

2. State Register (sequential)
Sequential logic that holds the value of the current state.

3. Output Logic (combinational)
Combinational logic that sets the output based on current

state.

FSM Example: A Simple Arbiter
• Four inputs: reset, clock req_0 and req_1.
• Two outputs: gnt_0 and gnt_1.

10

Modeling the Arbiter in Verilog
• Identify the combinational and sequential

components.
• Express each component as a combinational or

sequential always block.

Arbiter Next State Always Block
Use this combinational always
block to implement state
transition logic with case and if-
then-else constructs

11

• The state register will be loaded with
next_state from the next state logic on
the rising edge of clock.

• Reset will set the state register to IDLE
state on RESET and the rising edge of
clock.

Arbiter State Register Always
Block

Arbiter Output Always Block

Use a combinational always block to
implement logic output based on state.

12

Integrate Into One Module

Module and IO Declaration

Next State Always Block

State Register Always Block

Output Always Block

