Advanced Verilog

EECS 270 v10/23/06

	K OF NOT TO BLOCK	!	C	on	t	
Module blocking(a,b,c,x,y); input a,b,c; output x,y; reg x,y; always @* begin x = a & b; y = x c; end endmodule	Blocking behavior	a	b	с	x	v
	Initial values	1	1	0	1	1
	a changes→always block execs	0	1	0	1	1
	x = a & b; //make assignment	0	1	0	0	1
	y = x c; //make assignment	0	1	0	0	0
					_	
	Non-blocking behavior	a	b	c	X	у
Module nonblocking(a,b,c,x,y); input a,b,c; output x,y; reg x,y; always @* begin x <= a & b; v <= a b;	Initial values	1	1	0	1	1
	a changes→always block execs	0	1	0	1	1
	x = a & b;	0	1	0	1	1
	y = x c; //x not passed from here	0	1	0	1	1
	make x, v assignments	0	1	0	0	1

Modeling Finite State Machines with Verilog

- Finite State Machines can be modeled with three general functions:
 - Next State Logic (combinational) Combinational logic that determines next state based on current state and inputs.
 - 2. State Register (sequential) Sequential logic that holds the value of the current state.
 - Output Logic (combinational) Combinational logic that sets the output based on current state.

