Advanced Verilog

EECS 270 v10/23/06

Continuous Assignments

review

» Continuously assigns right side of expression
to left side.

» Limited to basic Boolean and ? operators. For
example a 2:1 mux:

— ? operator
assign D=(A==1)?B:C; // if AthenD=Belse D=C;

— Boolean operators
assignD=(B & A) | (C & ~A); // if AthenD=Belse D=C;

Procedural Assignments

» Executes a procedure allowing for more powerful
constructs such as if-then-else and case statement.
* For example 2:1 mux:
— if-then-else
if (A) then D=Belse D=C;

— case This is obviously much
case(A) easier to implement and
I'bl : D = B; read then Boolean
1'00:D=C; expressions!!
endcase
Always Block

* An always block is an example of a
procedure.

» The procedure executes a set of assignments
when a defined set of inputs change.

2:1 mux Always Block

Module mux 2 1(a, b, out, sel); Declare Module and IO as before.

input a, b, sel;

All data types in always blocks must be
declared as a ‘reg’ type.

output out;

reg out; This is required even if the data type is for

combinational logic.

always @ (a or b or sel)

The always block ‘executes’ whenever

begin signals named in the sensitivity list
if (sel) out = a; change.
else out = b; .
end Literally: always execute at a or
b or sel.
endmodule Sensitivity list should include

conditional (sel) and right side (a, b)
assignment variables.

As Easier Way to Implement the
Sensitivity List

» Recent versions of Verilog provides a means to
implement the sensitivity list without explicitly
listing each potential variable.

* Instead of listing variables as in the previous
example

always @ (a or b or sel)

Simply use The * operator will automatically
always @* < identify all sensitive variables.

Blocking vs Non-Blocking Assignments

» Blocking (=) and non-blocking (<=) assignments are provided to
control the execution order within an always block.

» Blocking assignments literally block the execution of the next
statement until the current statement is executed.

— Consequently, blocking assignments result in ordered
statement execution.

For example:

assume a = b = 0 initially;

a=1; /lexecuted first

b=a; /lexecuted second

then a=1, b =1 after ordered execution

Blocking vs Non-Blocking Cont

* Non-blocking assignments literally do not block the execution of the next
statements. The right side of all statements are determined first, then the left
sides are assigned together.

— Consequently, non-blocking assignments result in simultaneous or
parallel statement execution.

For example:

assume a = b = 0 initially;
a<=1,
b<=a;

then a =1, b = 0 after parallel execution

} Execute together (in parallel)

Result is different from ordered exec!!! Does not preserve logic flow

To Block or Not to Block ?

* Ordered execution mimics the inherent logic flow of

combinational logic.

* Hence blocking assignments generally work better for

combinational logic.

* For example:

x=a&b

logic flow

v

To Block or Not to Block

Module blocking(a,b,c,x,y);
input a,b,c;
output x,y;
reg x,y;
always @*
begin
x=a&b;
y=x|c;
end
endmodule

Blocking behavior

Initial values

a changes—>always block execs

x =a & b; //make assignment

y=x|c; //make assignment

Slo|IOo ||

—_ == -

oSlo|o|Oo |0

SO |=|=| ™

OS|l=|—=|—= |«

Non-blocking behavior

Module nonblocking(a,b,c,x,y); | Initial values

input a,b,c;
output x,y;
reg x,y;
always @*
begin
x<=a&b;
y<=x|¢;
end
endmodule

a changes—>always block execs

x=a&b; -~

—_ = =

y =X | ¢; //x not passed from here

—_— === <

make X, y assignments

oS|I |||~

—_— == == |

non-blocking behavior does not preserve

logic flow!!

c
0
0
0
0
0

Sequential Logic

» Can be generalized as a series of
combinational blocks with registers to hold

results.
inputs results [inputs results [more

stages

clk
T Results of each stage are stored (latched) in a
register (D-Flip-Flops) by a common clock

Sequential Example

« Shift registers are used to implement
multiplication/division and other functions.

» Consider a simple 2-bit “right” shift:
ST L=y

S T R L »

SRR S P SN ck |DO | QO Ql
...... < inat CRp mSﬂEL“
""" — B initial | 1 0 0
rising | 1 1 0
common No combinational logic edge
clock for simple shift, just rising | 0 0 1
simple pass thru edge

Sequential Example Cont 1

 Notice that the inputs of each stage are
“evaluated” then latched into the registers at
each rising clock edge.

Mame

Walue at
426 ns

0 ps WU.p ns 2U.IU ns a0, P ns 4U.IU ns
4.247 ns
|

clk
oo
el
o1

B0
BO
BO
B0

—
I i
e

47—N—P<—>
inputs evaluated% /

between rising results latched on rising

clk edges

clk edge

Sequential Example Cont 2

* Because the shift logic evaluates inputs in parallel and
latches result on a rising clk edge, a non-blocking always
procedure sensitive to a rising clock can be used to

implement.

Sensitive to rising clock edge. Note that

module shirzb(clk, DO, QO, Qi) in this case we must explicitly specify

input clk, DO;
output 0, Q1;
reg Q0, Q1;

always [([posedge clk)

hegin
Q0 <= DO;
Q1 <= Q0;
end
endmodule

- | sensitivity to the rising edge of clock.
Simply using the * will not work.

'\

‘ process statements in parallel

Sequential Example Cont 3

» What if we used blocking statements instead.
Notice the following results:

module shftib(clk, DO, Q0, Q1);
input eclk, DO;

output Q0, QL; 0 ps 10.0 ns 20.0 ns 30.0 ne 40.0 ng
Walue at ¥ ¥ T I

reg Q0, Q1; Name 475 1 1247 ns

always @ (posedge clk) 4

begin ok B0 S e e
Qo = Do; Do BO
Q1 = Q0; Qo BO [

end o1 B0 [

endmodule /

The logic statements are
simplified to Q0 = Q1 =
DO. Logic is evaluated on
rising edge of clk. Verilog
is synthesized as one stage
logic.

Summary

* Combinational logic: Use blocking
statements with always blocks with the *
operator to mimic logic flow of
combinational logic.

* Sequential logic: Use non-blocking
statements with always blocks sensitive to
rising clock edge to mimic parallel
sequential logic.

Modeling Finite State Machines
with Verilog

 Finite State Machines can be modeled with
three general functions:

1. Next State Logic (combinational)

Combinational logic that determines next state based on
current state and inputs.

2. State Register (sequential)
Sequential logic that holds the value of the current state.
3. Output Logic (combinational)

Combinational logic that sets the output based on current
state.

FSM Example: A Simple Arbiter

» Four inputs: reset, clock req 0 and req 1.
« Two outputs: gnt 0 and gnt 1.

o When req_0 is asserted and req_1 is not asserted, gnt_0 is asserted

« When req_1 is asserted and req_0 is not asserted, gnt_1 is asserted

« When both req_0 and req_1 are asserted then gnt_0 is asserted: in other words,
priority is given to req_0O over req_1.

Ireq_0 &4 Ireq_1

Modeling the Arbiter in Verilog

* Identify the combinational and sequential
components.

» Express each component as a combinational or
sequential always block.

NEXT STATE next_state[0] STATE state[0 QUTPUT
LOGIC P MEMORY LOGIC
> ant0
> next_state[1] state[1
>
req 0 — next_state[2] N state[2 P ant_t
rec_1 —w g

clock

reset

Arbiter Next State Always Block

always @" . . .
begi: e Use this combinational always

;:Daiz(étate}.f N block to implement state
- [f(req 0==1b1) transition logic with case and if-

next_state = G X
else if (req_1 == 1'b1) then-else constructs
next_state= GNT1;
else
next_state = IDLE;
GNTO: if (reg_0==1b1)
next_state = GNTO;
else
next_state = IDLE;
GNT1: if (reg_1==1b1)
next_state = GNT1;
else
next_state = IDLE;
default: next_state = IDLE;
endcase
end

» Ireq 0 && Ireq_1

Arbiter State Register Always
Block

Ireq_0 &4 Ireq_1

always @ (posedge clock)

begin
if (reset == 1'b1) N
state <= IDLE;
else

state <= next_state;
end

* The state register will be loaded with
next state from the next state logic on
the rising edge of clock.

* Reset will set the state register to IDLE
state on RESET and the rising edge of
clock.

Arbiter Output Always Block

always @”
begin
fSEE(:State)begin Use a combinational always block to
gnt_0 = 1'00: implement logic output based on state.
gnt_1=1p0;
end
GNTO: begin
gnt_0= 11
gnt_1=1h0
end
GNT1: begin
gnt_0 = 1'b0;
gnt_1=1b1;
end
default: begin
gnt_0 = 1'h0; el
gnt_1 = 1'h0;
end
endcase

end

Integrate Into One Module

Module and 10 Declaration

Next State Always Block

State Register Always Block

Output Always Block

macuie artiber {dock, rezet, ra_0, req_1, gnt_g, grt_i);

nputcinck, reset, 10, req_t; £ ceclaratians
et gnt_; utput deciarations
=3 ant_g, gni_i;

parameter IDLE=3DO01;
parameter GNTOe3 0T
parameter GNTImFEI0

coding for s &
2 encoaing =

reg [2:0] stater ‘Sequential variable to stons the curent state
r2g [2:0] nevt_stabe; if Combinabanal variable wsed 1o caiculste S next state

aways @ i Combinatonal logke Block
beg

‘plements iranstans In =i
ST see Flg. 2 for state clagram]
b1
nes_stabew GHTI:
sine
nes_state = OLE:
GNTI: H{rmo_0me 1)
nes_itate = GRTI:
aKTY

rax
cetndl nesd_stobe - IOUE:
ergcase

end of aheays &

‘alwayz @ poasdge dock)
e

n
Firmsetes 151)
state <= IDLE,
s
st <m newt_state;
e 1 ena of aheays @

(Dazenge ciock)

aways @ i Culput logic-detemines oulguts om current state
beg

BT

=2
cetmat: bagin

eracaze
end ot aheays

=
encmosue

