
Introduction to Combinational

Verilog

EECS270 rev 9/25/12

What is Verilog?

• An HDL: Hardware Description Language

• Another way to express logical function.

• Fundamental form is an algebraic equation.

For example:

 C = A & B

 Schematic equivalent:

Anatomy of a Verilog Module

• Used to organize logical functions

 Top-Level-Module (just one)

 Sub-Level-Module 1 (multiple sub modules)

 Sub-Level-Module 2

 Sub-Level-Module 3

• Consists of:

– Module Declarations

– Input Output Declarations

– Logic Function

 output variables = fnc(input variables)

Lets Make a Verilog Half Adder

Module
Schematic Half Adder Verilog Half Adder

Module Declaration

Module Declaration

Module Name

Inputs (listed first)

Outputs (listed last)

Marks end of module

Input and Output Declarations

Input Declaration
Input Connections Listed in

Module Declaration

Output Declaration Output Connections Listed

in Module Declaration

Output Data Type Declaration

• Must be declared as either “wire” or “reg”

• wire: Does not hold state and depends continuously

on input values.

• reg: (Register) dependent on previous values or

state. This type will be used later in sequential logic

labs.

Assignments

• Assignments associate output variables to input

variables via a logical function.

• Although the assignment for cout follows s, s and cout

respond simultaneously (in parallel) to changes in a

and b.

• Unlike programming languages such as C, these

logical statements are not processed in sequential order.

Verilog Operators Available for

Lab 3

Verilog is a very powerful language with high

level constructs such as: If Then Else, Case

Statements, Arithmetic operators, Etc

For Lab 3 you are only allowed to use:

1. Bitwise AND &

2. Bitwise OR |

3. Bitwise negation ~ Can be combined with

other logical functions ie NOR of A, B is

~(A | B).

4. Bitwise XOR ^

Literals
Literals are constants. The syntax for a constant is:

 <size><base format><number>

size: size of number in bits, optional

base: numeric base, b (binary), d (decimal, default), h (hex)

number: Constant to be specified

For example:

549 decimal number, no size specified

'h8FF hex number, no size specified

4'b11 4-bit binary number (0011)

5'd3 5-bit decimal number (00011)

Literals, continued

Defining constant references can be very helpful and

makes your HDL readable.

For example,

`define CONST3 3’b011

a = b & `CONST3;

Sets

• Sets are a way to express a collection of signals

• For example, lets say we want to set the seven segment

HEX0 display to the pattern 7.

• 1st, declare the seven segments as a set:

 Output [6:0] H0;

• 2nd, set each element to the appropriate level to give the

pattern 7.

Sets, continued

assign H0[0] = 0;

assign H0[1] = 0;

assign H0[2] = 0;

assign H0[3] = 1;

assign H0[4] = 1;

assign H0[5] = 1;

assign H0[6] = 1;

Member Assignment Group Assignment

assign H0 = 7’b1111000

assign H0 = 7’h78

`define N7 7’b1111000

assign H0 = `N7;

or

or

Clearest and easiest

Module Hierarchy

• HDL project are typically organized into one top level

module and several supporting sub modules.

• Sub modules generally represent the various functions

needed to support your design.

• The top level module defines the inputs and outputs of

your application and the organization of the supporting

functions or sub modules.

Module Hierarchy Example
Consider a two-bit adder built with a half adder and full adder.

add_2bit module (top)

 add_half module (sub)

 add_full module (sub)

Half Adder Module
Sub Module

Full Adder Module
Sub Module

Two Bit Adder Module
Top Level Module

Application IO on top level

Pass values between modules with

“wire” types

module “call” syntax

<module name> <instance name> (<parameter list>);

• Module name is the name declared in module

• Instance name is one you make up. Each must be unique.

• Inputs and Outputs must follow order set in module

declaration.

Final Verilog File

add_2bit module (top)

 add_half module (sub)

 add_full module (sub)

sub module

sub module

top module

Quartus Particulars

• As with schematic projects, the top-level-module

and project name must be the same.

• Top-level-module and file (.v) should be the same

name.

• Although it is acceptable to place modules in

separate files, it is recommended to put the top-

level-module and sub modules in the same file.

• FPGA pin assignments are made to IO names

established in the top-level-module with either pin

assignment editor or editing the qsf file.

