1) 


$a b=01$

| cd/ef | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 16 | 20 | 28 | 24 |
| 01 | 17 | 21 | 29 | 25 |
| 11 | 19 | 23 | 31 | 27 |
| $100^{18}$ | 22 | 30 | 26 |  |


!a!b!cd!f, !bc!d!e!f, !bcd!ef, !a!b!ce!f, !a!bde!f, !bcde!f, a!b!d!e!f, a!b!c!def, abcdef Min SoP=!a!b!cd!f+!bc!d!e!f+!bcd!ef+a!b!ce!f+!bcde!f+a!b!d!e!f+a!b!c!de!f+abcdef

| 2 | 000010 | $X$ |
| :--- | :--- | :--- |
| 4 | 000100 | $X$ |
| 8 | 001000 | $X$ |
| 32 | 100000 | $X$ |
| 6 | 000110 | $X$ |
| 40 | 101000 | $X$ |
| 13 | 001101 | $x$ |
| 14 | 001110 | $x$ |
| 19 | 001011 |  |
| 45 | 101101 | $x$ |
| 46 | 101110 | $x$ |
|  |  |  |
| 63 | 111111 |  |


| 2,6 | $000 \times 10$ |  |
| :--- | :--- | :--- |
| 4,6 | $0001 \times 0$ |  |
| 8,40 | X 01000 |  |
| 32,40 | $10 \times 000$ |  |
| 6,14 | $00 \times 110$ |  |
| 13,45 | $\mathrm{X01101}$ |  |
| 14,46 | $\mathrm{X01110}$ |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| term | 19 | 63 | 2,6 | 4,6 | 8,40 | 32,40 | 6,14 | 13,45 | 14,46 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  |  | $\mathrm{X}^{*}$ |  |  |  |  |  |  |
| 4 |  |  |  | $\mathrm{X}^{*}$ |  |  |  |  |  |
| 8 |  |  |  |  | $\mathrm{X}^{*}$ |  |  |  |  |
| 32 |  |  |  |  |  | $\mathrm{X}^{*}$ |  |  |  |
| 6 |  |  |  | X |  |  | X |  |  |
| 40 |  |  |  |  | X | X |  |  |  |
| 13 |  |  |  |  |  |  |  | $\mathrm{X}^{*}$ |  |
| 14 |  |  |  |  |  |  | X |  | X |
| 19 | $\mathrm{X}^{*}$ |  |  |  |  |  |  |  |  |
| 45 |  |  |  |  |  |  |  | $\mathrm{X}^{*}$ |  |
| 46 |  |  |  |  |  |  |  |  | $\mathrm{X}^{*}$ |
| 63 |  | $\mathrm{X}^{*}$ |  |  |  |  |  |  |  |

Almost every prime implicant is an essential prime implicant. And the one that isn't isn't in the SoP.


3

Using GN=00, "01"=01, "0"=10, "00"=11

| Q1 | Q0 | A | N1 | N0 | $\mathbf{X}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 |


4.
a.

- 4-bit: $12+(2+3+4+5)=26$
- 16-bit: Need to add the logic for $P$ and $G$ to each $\quad P=$ P3P2P1P0 4-bit adder. Notice that we already have most of $\quad G=G 3+$ P3G2 + P3P2G1 + P3P2P1G0 G (all the AND gates) done, so we just need the OR gate for G. So two more gates total. With those two additional that's 28 gates for each of the 4-bit adders. Plus the 14 gates for the CL logic at the next level, that's $28 * 4+14=126$ gates.
- 64-bit: That's 126 gates for each 16-bit adder. Plus the two to find $P$ and G. Plus the 14 for the CL logic gives us $128 * 4+14=526$.
b. .
- 4-bit: top is only 2 -input gates, so 12 gates*2=24 gate-inputs. The CL logic is 4 inputs in stage 1,8 in 2,13 in 3 , and 19 in stage $4=44$ gate inputs. So 68 total inputs.
- 16-bit: Each 4-bit has the 68 inputs plus another 4 for $P$ and 4 for G. So 76*4. Add in the 44 for the CL logic, you've got 348 inputs.
- 64-bits: Each 16-bit adder has the 348 bits plus another 8 for $P$ and $G$. Then 44 for the CL logic, you've got $4 *(348+8)+44=1468$ gate inputs.
c. (reading page 373 gives a fairly good explanation of the logic here).
- 4-bit has 4 gate-delays ( 1 for P/G, 2 for CL logic, 1 for the XOR to generate s1).
- 16-bit: Adding P and G to the 4-bit adder doesn't add any delay. So just an extra CL logic, which gets us to 6 gate-delays
- 64-bit: Same logic gets us to 8 gate-delays.
d. This problem was defined a bit too poorly to be graded (log base actually matters for what path is critical). Everyone was given full points if an effort was made.

5. 

There was no specific format given for data values, so anything reasonable was taken. The key is the need for self-modifying code.

```
blt 8 1000 2001 // skip increment if mem<101.
add 2000 2000 2002 // increment total
add 2 2 2002 // modify the address to check!
blt 0 2 2003 // keep going if mem[2]<2000.
halt // if branch not ta
```

```
2000: 0 //total
2001: 101 //value to compare to
2002: 1 //one
2003: 2000 //if mem[3] isn't this big, keep going.
```

