1)

ab=00
cd/ef 00 01 11 10
0 12 8
00 1
1 5 13__-
Ql.-
3 7 15 1
11
D 6
19" 4 %D
ab=10
cd/ef 00 | 01 11
36 |44
oo@
33 7 s
o+ N @
35 Bo N\ b7 |3
11 \\
34, [38 | 142
10 1

lalblcd!f, lbcldle!f, Ibcdlef, lalblcelf, lalbdelf, Ibcdelf, albl!d!e!f, albl!c!def, abcdef

ab=01
cd/ef 00 01 11 10
16 Ppo 8 pa
00
17 P11 9 s
01
19 p3 pB1 7
11 1
s P2 Bo s
10
ab=11
cd/ef 00 01 11 10
hs 52 6o |56
ho B3 61 |57
01
51 |5 3 |59
11 1
50 |54 |62 58
10

Min SoP=!alb!cd!f+!bc!d!e!f+!bcd!ef+alblce!f+!bcdelf+albld!e!f+alblc!de!f+abcdef

2,4,6,8,13,14,19,32,40,45,46,63

2 | 000010 x| [26 |]o000x10
4 000100 x| [46 |0001x0
8 | 001000 x| [840 |x01000
32 | 100000 x| [32,40 | 10x000
6 | 000110 x| [614 [00x110
40 | 101000 x| [1345 | x01101
13 | 001101 x| [14,46 | x01110
14 | 001110 x
19 | 001011
45 [101101 x
46 | 101110 x

‘63 111111 | |

Almost every prime implicant is an essential prime implicant. And the one that isn’t isn’t in the SoP.

Min SoP= alblc!def + abcdef + lalblce!f + lalblcd!f + Ibc!d!le!f + albl!d!e!f + !bcd!lef + !bcde!f

=
~
<

=10, “00”=11

=01' llO”

=00, “01”

Using GN

NO

N1

Qo0

Q1

Q1 PO+

a1l P1

Qo P2
A P3

LA

CLB

8x2 Mem.

W N = O

FPGA

A

[\
R o »r| o] »r| o -
o| | o] ~r| of ~| o] -

DO

2x1

CLB
8x2 Mem.
0 0?
1 0?
2 0?
3 17
a2 ACE
[00]PO e E
mOl 10 |:>1 a0 2|
m1 6L’
Switch D1 DO
matrix I_‘
> > i
10 10
[T2x1] | [TT]2x1

> PG -

P77 x

=P8 Qo0

A P4
- P5

P9 Q1

e 4-bit: 12 + (2+3+4+5)=26

e 16-bit: Need to add the logic for P and G to each P - PIPIP1EQ
4-bit adder. Notice that we already have most of G = G3 + P362 + PIPIC]
G (all the AND gates) done, so we just need the OR gate for G. So two more
gates total. With those two additional that’s 28 gates for each of the 4-bit
adders. Plus the 14 gates for the CL logic at the next level, that’s 28*4+14=126
gates.

e 64-bit: That's 126 gates for each 16-bit adder. Plus the two to find P and G. Plus
the 14 for the CL logic gives us 128*4+14 = 526.

e 4-bit: top is only 2-input gates, so 12 gates*2=24 gate-inputs. The CL logicis 4
inputs in stage 1, 8in 2, 13 in 3, and 19 in stage 4 = 44 gate inputs. So 68 total
inputs.

e 16-bit: Each 4-bit has the 68 inputs plus another 4 for P and 4 for G. So 76*4.
Add in the 44 for the CL logic, you’ve got 348 inputs.

e 64-bits: Each 16-bit adder has the 348 bits plus another 8 for P and G. Then 44
for the CL logic, you’ve got 4*(348+8)+44 = 1468 gate inputs.

c. (reading page 373 gives a fairly good explanation of the logic here).

e 4-bit has 4 gate-delays (1 for P/G, 2 for CL logic, 1 for the XOR to generate s1).

e 16-bit: Adding P and G to the 4-bit adder doesn’t add any delay. So just an extra
CL logic, which gets us to 6 gate-delays

e 64-bit: Same logic gets us to 8 gate-delays.

d. This problem was defined a bit too poorly to be graded (log base actually matters for
what path is critical). Everyone was given full points if an effort was made.

5.

There was no specific format given for data values, so anything reasonable was taken
need for self-modifying code.

blt
add
add
blt
halt

2000:
2001:
2002:
2003:

8
2000
2
0

101

2000

1000
2000
2
2

2001 // skip increment if mem<101.

2002 // increment total

2002 // modify the address to check!

2003 // keep going if mem[2]<2000.
// if branch not ta

//total
//value to compare to
//one

. The key is the

//if mem[3] isn’t this big, keep going.

