Individual Homework 1 -- EECS 270, Spring '23 - Answers

1.

$\left(!A^{*} C\right)+\left(A^{*}!B^{*}!C\right)+\left(B^{*} C\right)$.

A	B	C	$!\mathrm{A}^{*} \mathrm{C}$	$\mathrm{A}^{*}!\mathrm{B}^{*}!\mathrm{C}$	$\mathrm{B}^{*} \mathrm{C}$	output
0	0	0				0
0	0	1	1			1
0	1	0				0
0	1	1	1		1	1
1	0	0		1		1
1	0	1				0
1	1	0				0
1	1	1			1	1

2. $F=!a^{*} b+!a * b+a^{*} c^{*}!d+!b$
a) a, b, c, d, (F could be listed here...)
b) !a, a, b, !b, c, !d, (F could be listed here...)
c) !a*b, !a*b, a*c*!d, !b. (Yes, !b is a "product term", see page 55)
3. Just find the 1s. (!a*! $\left.{ }^{*} c\right)+\left(a^{*} b^{*}!c\right)+\left(a^{*} b^{*} c\right)$
4. $\left(!a^{*}!c+!b\right)^{*} c+!\left(a^{*} b\right)=!\left(a^{*} b\right)$

The level of detail needed can be tricky, but as a rule, just use one rule at a time. There are multiple solutions.

$\left(!a^{*}!c+!b\right)^{*} c+!\left(a^{*} b\right)$	
$=!a^{*}!c^{*} c+!b^{*} c+!\left(a^{*} b\right)$	
$=!a^{*} 0+!b^{*} c+!\left(a^{*} b\right)$	
$=0+!b^{*} c+!\left(a^{*} b\right)$	
$=!b^{*} c+!\left(a^{*} b\right)$	
$=!b^{*} c+!a+!b$	
$=!a+!b+!b^{*} c$	
$=!a+!b$	
$=!\left(a^{*} b\right)$	

5.

a. By the rules of logic (This one can get nasty, but there is a short parth)
$F=!\left(!\left(a^{*} b\right)^{*}!\left(c^{*} d\right)\right) \quad$ DeMorgan's
$F=!\left(!\left(a^{*} b\right)^{*}!\left(c^{*} d\right)\right)^{*} 1$
Note that G=!F
Identity
So not equal
b.

\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{F}	$!\left(\mathbf{a}^{*} \mathbf{b}\right)$!(c*d)	$!\left(!\left(\mathbf{a}^{*} \mathbf{b}\right)^{*}\left(\mathbf{c}^{*} \mathbf{d}\right) \mathbf{)}\right.$	\mathbf{G}
0	0	0	0		1	1	0	1
0	0	0	1		1	1	0	1
0	0	1	0		1	1	0	1
0	0	1	1	1	1	0	1	0
0	1	0	0		1	1	0	1
0	1	0	1		1	1	0	1
0	1	1	0		1	1	0	1
0	1	1	1	1	1	0	1	0
1	0	0	0		1	1	0	1
1	0	0	1		1	1	0	1
1	0	1	0		1	1	0	1
1	0	1	1	1	1	0	1	0
1	1	0	0	1	0	1	1	0
1	1	0	1	1	0	1	1	0
1	1	1	0	1	0	1	1	0
1	1	1	1	1	0	0	1	0

Again, we see F and G are actually inverses of each other.
7. It's a majority gate, which you've seen in lab. $A=m 0 * m 1+m 1 * m 2+m 2 * m 0$ is the formula. You'd need to draw that as gates too.
8. $\mathrm{T}=$! N 4
9. $10101 \& 01100=00100$
10. .
a. $\quad \mathrm{C}_{16}$
b. 12_{16}
c. A_{16}
d. 25_{16}
e. $571_{8}=101111001_{2}=101111001_{2}=179_{16}$
11. Combinational logic's output depends only on the current inputs. Sequential logic has memory and so depends on prior inputs also.

