Quiz 2 - Spring 2023 - EECS 270

Name:	uname:
will have	is graded out of 100 points and is worth about 4% of your class grade. You 20 minutes for this quiz. Closed everything including calculators! <u>To receive edit, work must be shown.</u>
1. Fill-in	-the-blank [20 points, -5 for each wrong or blank answer]
a.	The time before the rising edge of the clock when no input should be changing
	after is called the
b.	is -7 as a 5-bit 2's complement number
c.	A signal with a frequency of 10MHz has a period ofns
d.	!(A+!B+C), when expanded into canonical sum-of-products form, has
	minterms.

- 2. Answer the following questions:
 - a. Draw gates which implement a D-latch. [15]

3. Design a state machine which implements the following state transition diagram. Assign state bits **S[1:0]** as **00** for state **X**, **10** for state **Y**, and **11** for state **Z**. You are to assume that you will never reach the state S[1:0]=10, so you don't care what happens in that case. You must show your work to get any credit! *You only need to compute the next state and output logic, you don't need to draw the gates or flip-flops! Place your answer where shown, all answers must be in <u>sum-of-products</u> form. [45 points]*

(Be sure all are in sum-of-products form (canonical or otherwise)!)

NS1= _____

NS0=____

W= ____