Quiz 2 - Spring 2023 - EECS 270

Name: \qquad uname: \qquad

This quiz is graded out of 100 points and is worth about 4% of your class grade. You will have 20 minutes for this quiz. Closed everything including calculators! To receive partial credit, work must be shown.

1. Fill-in-the-blank [$\mathbf{2 0}$ points, $\mathbf{- 5}$ for each wrong or blank answer]
a. The time before the rising edge of the clock when no input should be changing after is called the \qquad
b. \qquad is -7 as a 5 -bit 2 's complement number
c. A signal with a frequency of 10 MHz has a period of \qquad ns
d. !(A+!B+C), when expanded into canonical sum-of-products form, has
\qquad minterms.
2. Answer the following questions:
a. Draw gates which implement a D-latch. [15]
b. Complete the timing diagram below for both a D latch and a D flip-flop. If the value is unknown at some point, UIIIIII clearly indicate that with hashes (as shown). [20 points]

Value unknown

3. Design a state machine which implements the following state transition diagram. Assign state bits $\underline{S[1: 0]}$ as $\mathbf{0 0}$ for state $\mathbf{X , 1 0}$ for state Y, and 11 for state Z. You are to assume that you will never reach the state $S[1: 0]=10$, so you don't care what happens in that case. You must show your work to get any credit! You only need to compute the next state and output logic, you don't need to draw the gates or flipflops! Place your answer where shown, all answers must be in sum-of-products form. [45 points]

```
Input is B.
Output is W.
W=1 in X, is otherwise 0.
```


(Be sure all are in sum-of-products form (canonical or otherwise)!)

NS1= \qquad

NSO = \qquad
$\mathrm{W}=$ \qquad

