Quiz 2 – Spring 2023 – EECS 270

Name: ______ uname: _____

This quiz is graded out of 100 points and is worth about 4% of your class grade. You will have 20 minutes for this quiz. Closed everything including calculators! <u>To receive</u> partial credit, work must be shown.

1. Fill-in-the-blank [20 points, -5 for each wrong or blank answer]

a. The time *before* the rising edge of the clock when no input should be changing

after is called the <u>setup time</u>

- b. <u>11001</u> is -7 as a 5-bit 2's complement number
- c. A signal with a frequency of 10MHz has a period of _____ns
- d. !(A+!B+C), when expanded into canonical sum-of-products form, has

____1 ____ minterms.

!(A+!B+C) = !A*B*C

- 2. Answer the following questions:
 - a. Draw gates which implement a D-latch. [15]

See text.

 Design a state machine which implements the following state transition diagram. Assign state bits <u>S[1:0] as 00 for state X, 10 for state Y, and 11 for state Z</u>. You are to assume that you will never reach the state S[1:0]=01, so you don't care what happens in that case. You must show your work to get <u>any credit! You only need to compute the next state and output logic, you don't need to draw the gates or flip-flops!</u> Place your answer where shown, all answers must be in <u>sum-of-products</u> form. [45 points]

S 1	S 0	В	NS1	NS0
0	0	0	1	0
0	0	1	1	1
0	1	0	DC	DC
0	1	1	DC	DC
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

NS1=!S1+!S0+!B NS0=S1*!B+!S0*B

(Be sure all are in sum-of-products form (canonical or otherwise)!)

NS1=	!S1+!S0+!B
NS0=	S1*!B+!S0*B
W=	!S1