Quiz 3 - EECS 270, Spring '23

Name: \qquad unique name: \qquad

Honor code:

I have not given or received aid on this quiz, nor have I observed anyone else doing so:
Sign here: \qquad
This quiz is graded out of 100 points and is worth about 3% of your class grade. You will have $\mathbf{2 0}$ minutes for this quiz. Closed everything including calculators! To receive partial credit, work must be shown.

1. Find the minimum product-of-sums $\sum_{(a, b, c, d)}=(1,4,6,9,11,12,13)+d(0,15)$ using a Kmap. Show your work and clearly circle your answer. [40]
Note: this is Product-of-sums!!!

And the four corners. That gives !Function=!b!d+!a!bc+!abd+(abc or ac!d). So $(b+d)^{*}\left[(a+b+!c)\right.$ or $[(a+!c+!d)]^{*}(a+!b+!d)^{*}[(!a+!b+!c)$ or $(!a+!c+d)]$
2. Using a single shift register (given below), a decoder (any size), inverters (as many as needed), and up to four 2-input gates of any type, build a device which takes a single-bit input X and has an output Y go high if the last 3 values have been 001 or the last two values have been 11. On this shift register, on the rising edge $\mathrm{Y}[0]$ gets the Shift in value, $\mathrm{Y}[1]$ gets the $\mathrm{Y}[0]$ valute, etc.

There are a couple of ways to do this.

- You could use a decoder with Y [2:0] as inputs and "OR" together decoder outputs 1, 3, and 7 (using 2 OR gates).
- Another way is to AND Y1 and YO, use 2 AND gates to get !Y2*!Y1*Y0 and then OR those together. (4 gates total).

