NPN Large Signal (Assume FAR)

VDD = 10V
Beta = 100
VA = infinity
RB=1k
RE=1k
VBEon=0.7V
VCEsat=0.5V

1. Substitute large-signal FAR model
2. Solve for IC
3. Check assumption

NPN Large Signal (Assume SAT)

VDD = 10V
Beta = 100
VA = infinity
RB=1k
RE=1k
VBEon=0.7V
VCEsat=0.5V

1. Substitute large-signal SAT model
2. Solve for IC
3. Check assumption
PNP Large Signal (1)

- VDD = 10V
- Beta = 100
- VA = infinity
- RC=1k
- VBEon=-0.7V
- VCEsat=-0.5V

Solve for IC

1. Choose region of operation
2. Substitute model
3. Solve for IC
4. Check assumption

PNP Large Signal (2)

Find expression for IC

1. Choose region of operation
2. Substitute model
3. Find expression for IC
NMOS DC Model

Find expression for I_D

1. Choose region of operation
2. Substitute model
3. Find expression for I_D

NPN Small Signal Rout

Neglect r_s in BJT model

1. Find small signal AC model
2. Apply test source to measure R_{out}
3. $R_{out} = \frac{v_t}{i_t}$
OCTC to Find f_L

Neglect r_o in BJT model

1. Find small signal low-freq model
2. Apply OCTC

NPN Design Example (1)

Find relationship between Power, DC bias stability, and gain
NPN Design Example (2)