NPN Large Signal (Assume FAR)

Solve for IC

EECS 311 Fall 2008

10/31/2008 Discussion Session

NPN Large Signal (Assume SAT)

Solve for IC

- Substitute large-signal SAT model
 Solve for IC
- 3. Check assumption

EECS 311 Fall 2008

10/31/2008 Discussion Session

2

PNP Large Signal (1)

VDD = 10VBeta = 100
VA = infinity
RC=1k
VBEon=-0.7V
VCEsat=-0.5V

Solve for IC
Solve for IC
Solve for IC
4. Check assumption

Solve for IC

- 1. Choose region of operation

EECS 311 Fall 2008

10/31/2008 Discussion Session

3

PNP Large Signal (2)

Find expression for IC

- 1. Choose region of operation
- 2. Substitute model
- 3. Find expression for IC

EECS 311 Fall 2008

10/31/2008 Discussion Session

NMOS DC Model

Find expression for ID

- 1. Choose region of operation
- 2. Substitute model
- 3. Find expression for ID

EECS 311 Fall 2008

10/31/2008 Discussion Session

5

NPN Small Signal Rout

Neglect r_o in BJT model

- Find small signal AC model
 Apply test source to measure Rout
 Rout = vt/it

EECS 311 Fall 2008

10/31/2008 Discussion Session

OCTC to Find f_L

Neglect r_o in BJT model

- Find small signal low-freq model
 Apply OCTC

EECS 311 Fall 2008

10/31/2008 Discussion Session

7

NPN Design Example (1)

Find relationship between Power, DC bias stability, and gain

EECS 311 Fall 2008

10/31/2008 Discussion Session

NPN Design Example (2)

EECS 311 Fall 2008

10/31/2008 Discussion Session

q

EECS 311 Fall 2008

10/31/2008 Discussion Session