University of Michigan EECS 311: Electronic Circuits Fall 2008

Quiz 2

11/3/2008

		$\mathcal{L}_{\mathcal{A}}$	
	\sim	MTIONS	
NAME:			

Honor Code:

I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code.

Signature	

Problem	Points	Score	Initials
1	26		
2	20		
3	30		
4	24		
	Total		

Problem 1 (26 Points): Potpourri – this problem has four unrelated parts.

a) Find the expression for gain $A_v = v_{OUT}/v_{IN}$ of the circuit below. Use the exact model for the diode, $i_D = I_S (e^{v_D/V_T} - 1)$. Assume the opamp is ideal.

Cannot solve for Yout !

if = iD = Is (e Sin/vt-1)

Vout = - RFIs (e Sin/vt-1)

Accepted all ensuers showing the above relationship between Voit and Vin

b) Find an expression for the voltage v_{OUT} for the circuit below assuming $i_{IN1} > 0$ and $i_{IN2} > 0$. Use the exact model for the diodes, $i_D = I_S \left(e^{v_D/V_T} - 1 \right)$, assuming the two diodes are identical (same values for I_S and same temperature).

$$i_{IN1} = V_{OUT} - i_{IN2}$$

$$V_{X} = V_{DO} - R_{B} (i_{IAI} + i_{IN2})$$

$$V_{OUT} = (V_{X} - V_{DI}) - (V_{X} - V_{D2})$$

$$= V_{D2} - V_{DI}$$

$$V_{D2} = V_{T} I_{D} (\frac{i_{IN2}}{I_{S}} + I)$$

$$V_{OI} = V_{T} I_{D} (\frac{i_{IN1}}{I_{S}} + I)$$

$$V_{OI} = V_{T} I_{D} (\frac{i_{IN1}}{I_{S}} + I)$$

c) Identify the region of operation of M_1 in the circuit below when $V_G = 2 V$, $V_D = 3 V$, and $V_S = -1 V$. Assume $V_{TN} = 1 V$ and ignore the body-effect on threshold voltage.

d) Identify the region of operation of M_1 in the circuit below when $V_G=3~V, V_D=5~V$, and $V_S=5~V$. Assume $V_{TP}=-1~V$ and ignore the body-effect on threshold voltage.

Problem 2 (20 Points): parts.

Use the following circuit and ignore base-width modulation for all $% \left\{ \left(1\right) \right\} =\left\{ \left(1\right) \right\} =\left$

a) Substitute the simplified large-signal model for the BJT in the forward-active region using the constant-voltage source model for the base-emitter junction diode. Solve for the values of I_C and V_{CE} .

b) Substitute the simplified large-signal model for the BJT in the saturation region using the constant-voltage source models for the base-emitter and collector-emitter voltages. Solve for the values of I_B and I_C .

c) Given your answers to parts a) and b), is \mathcal{Q}_1 in the forward-active or saturation region.

For SAT assumption, IB < 0 which cannot happen for NPN

Forward Active Region

nitials:

Problem 3 (30 Points): Use the circuit shown below to answer all of the following parts. Use the constant-voltage source model for the base-emitter junction diode of Q_1 . Ignore channel-length modulation, body effect, and base-width modulation for all parts.

a) Assuming Q_1 is kept in the forward-active region, find the numerical value of I_B required to support $I_C = 1 \ mA$.

b) Assuming M_1 is kept in saturation, find the numerical value of V_{BIAS} required to support I_B from part a).

VBIAS | To =
$$\frac{1}{2}$$
 Mp Cox $\frac{1}{2}$ (Vgs-VTP)²

Via Vgs-VTP = $\frac{1}{2}$ NpCox $\frac{1}{2}$ = $\frac{1}{2}$ 0.2V

VGS = VBIAS - 10V

$$\frac{|V_{GS}| > |V_{TP}|}{|V_{BIAS}|} = \frac{1}{8.8V} |V_{GS}| = -1.2V \Rightarrow |V_{GS}| - |V_{TP}| = 0.2V$$

ON

c) Find the maximum value of $I_{\mathcal{C}}$ allowed while keeping Q_1 in the forward-active region.

$$\frac{10V}{50\pi}$$

$$\frac{1}{5} = \frac{10 - 0.5}{50\pi} = \frac{190 \text{ mA}}{50\pi}$$

$$\frac{1}{5} = \frac{1}{50\pi}$$

$$\frac{1}{5} = \frac{1}{50\pi}$$

$$\frac{1}{5} = \frac{1}{50\pi}$$

Initials:	

d) As V_{BIAS} is swept from 0 to 10 V, the drain voltage V_D follows the graph shown below. Label the regions on the graphs where M_1 is in *cutoff*, *linear*, and *saturation*, specifically showing the values of V_{BIAS} at the boundaries between regions.

Page 11 of 16

e) Sketch the voltage at node V_C as V_{BIAS} is swept from 0 to 10~V. Use the graph from part d), giving you V_D as V_{BIAS} is swept over the same range, to generate your sketch. Label the regions on the graph where Q_1 is in off, forward-active, and saturation.

nitials:	

Problem 4 (24 Points): A non-linear two-terminal device M has the following I-V relationship, given in an expression and also plotted. Use this device to answer the following questions about small-signal analysis.

a) Derive an expression for the small-signal conductance i_m/v_m , linearized around a DC operating point defined by variables I_M and V_M .

$$\mathcal{O}_{m} = \frac{2 i_{m}}{2 r_{m}} \Big|_{D \cup Q} = 0.02 r_{m} \Big|_{Q}$$

b) Complete the small-signal model by drawing the circuit element in the box that should be used to model the device in small-signal. Evaluate the value of this element at the bias current of $I_M=40\ mA$ as shown in the graph above.

Small-Signal Model

Initials:			

c) The device is used in the following circuit. Draw the complete small-signal circuit, substituting the model for the device found in part b). Assume I_{BIAS} is a DC bias current.

(Space for additional work)