University of Michigan EECS 311: Electronic Circuits Fall 2008

PROBLEM SET 1

Issued 9/10/2008 Due in Lecture 9/17/2008

J&B refers to the course text: "Microelectronic Circuit Design (3rd Edition)," by Richard Jaeger and Travis Blalock.

- **P1.1** Do problems J&B 1.24, 1.25, 1.26, and 1.29. Leave your answers in terms of circuit parameters (R_1 , R_2 , v_s , etc.). Do not substitute in values for the components as directed by the problems.
- **P1.2** Refer to the circuit shown in J&B Figure P1.38 (p 39) for this problem.
- a) Substitute $R_1 = 2R$, $R_2 = 4R$, $R_3 = R$ and use superposition to solve for v_0 in terms of v_1 and v_2 . Do not substitute any values for the components. Show your work.
- b) Assume v_1 and v_2 may only take on the discrete values of either 0 or V_{ref} . Make a table of the 4 possible combinations of v_1 and v_2 (i.e. 0,0; 0, V_{ref} ; V_{ref} , 0; V_{ref} , V_{ref}), calculating v_0 for each combination.
 - Assuming the values of v_1 and v_2 may be controlled by digital controls, what does this circuit implement?
- **P1.3** Find the transfer function $V_{out}(s)/V_{in}(s)$ for each of the following circuits.

a)
$$\frac{V_{out}}{V_{in}} = \frac{1}{1 + \frac{s}{10^3}}$$

b)
$$\frac{V_{out}}{V_{in}} = \frac{1}{\left(1 + \frac{s}{10^3}\right)\left(1 + \frac{s}{10^6}\right)}$$

c)
$$\frac{V_{out}}{V_{in}} = \frac{\frac{s}{10^3}}{1 + \left(\frac{s}{10^3}\right)^2}$$

d)
$$\frac{V_{out}}{V_{in}} = \frac{1}{1 + s \frac{1}{10 \cdot 10^3} + \left(\frac{s}{10^3}\right)^2}$$

Hint:
$$\frac{V_{out}}{V_{in}} = \frac{1}{1 + s \frac{1}{Q \omega_n} + \left(\frac{s}{\omega_n}\right)^2}$$