University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 5 – THREE-STAGE AMPLIFIER Issued 11/23/2009 Design and Measurement Complete 12/7/2009 Report Due 12/9/2009 #### Introduction The goal of this lab is to design and build a three-stage amplifier with the specifications shown in Table 1. Only one design and one report are required per group. It is expected you will work together with your partner to characterize three 2N3904 NPN transistors, design the amplifier through hand-calculations and Cadence simulation, build the circuit and measure the performance, and write the report. | Specification | Value | |---|----------------------------| | Mid-band Voltage Gain (with R_L) | $ v_o/v_s \ge 2000$ | | Lower 3dB Cutoff Frequency | $f_L \le 100 \; Hz$ | | Upper 3dB Cutoff Frequency | $f_H = 22 kHz \pm 2 kHz$ | | Input Impedance | $R_{in} \ge 10 \ k\Omega$ | | Output Impedance | $R_{out} \le 100 \Omega$ | | Maximum Output Voltage Swing (at $10~kHz$) | $v_{o(max)} \ge 1 V_{ppk}$ | | Source Resistance | $R_S = 50 \Omega$ | | Load Resistance | $R_L = 1 k\Omega$ | | Bypass Capacitors | $\leq 47 \mu F$ | | Power Supply | 12 V | | Power Consumption | Minimized | Table 1. Amplifier specifications. There is no prelab report due for this lab; however, this is a time consuming lab that requires in-lab measurements be made during both weeks. Your goal should be to have the characterization of the 2N3904s, and all design and Cadence simulation completed by the beginning of Week 2 of this lab. #### **Amplifier Design** - **L5.1** Characterize three 2N3904 NPN transistors the same way you did for Lab 4. Measure I_C over a range of I_B and V_{CE} values using the HP4155. Measure C_μ over a range of V_{CB} values. This part should be completed during the first week of lab. Use the colored Liquid Paper to mark the three BJTs a different color to distinguish between them. - http://www.eecs.umich.edu/courses/eecs311/f09/tutorials/hp4155.html - L5.2 Circuit Topology: You are free to use any circuit topology of three stages or less that meets the specifications. The input and source resistance must be AC coupled to your amplifier through a bypass capacitor. The load resistance must also be AC coupled to your amplifier through a bypass capacitor. You will be evaluated on how robust your design is to changes in β_F . - **L5.3** Hand Design: Design each stage of the amplifier independently; however, for each stage you may need to consider the loading of the following stage. Make use of the R_{in} , G_{m} , and R_{out} modeling of each stage. Ignore variables whenever possible to simplify your expressions and get them in a form that is useful for design. During this part of the design, it is better (and faster) to *over*-simplify your expressions and then go back later to revisit your assumptions if required. - **L5.4** Simulation: Put your amplifier in Cadence and simulate the DC, AC, and transient response to verify all specifications are met. Download the *lab5.mod* model file and save it to your Cadence working directory (~/eecs311_f08). This model file will serve as a template. #### http://www.eecs.umich.edu/courses/eecs311/f09/labs/lab5.mod Edit the values of Bf, Vaf, and Cjc in the lab5.mod file for each device to match the values measured in lab. Use the base-to-collector junction capacitance model to approximate a value for Cjc using Vjc = 0.75 and Mjc = 0.3085. $$C_{\mu} = \frac{\text{Cjc}}{\left(1 + \frac{V_{CB}}{\text{Vic}}\right)^{Mjc}}$$ For the three *npn's* in your schematic, give each one a different model name, which are found in the *lab5.mod* file: *lab5_npn1*, *lab5_npn2*, *lab5_npn3*. Before running a simulation, within Analog Environment add the *lab5.mod* file under *Setup > Model Libraries ...*, click *Browse...* and find your *lab5.mod* file. Click *OK*, *Add*, and *OK*. Refer to the online Cadence tutorial for additional help using Cadence. ## http://www.eecs.umich.edu/courses/eecs311/f09/tutorials/cadence.html L5.5 Lab Exercises: Build your amplifier in the lab. Measure the values of each resistor used in your circuit. It will help to build and measure each stage separately and confirm the response matches predictions as you go along. Measure the DC voltages on every node when no input signal is applied and record them for your report. Build a 100:1 attenuator with a source resistance of $50~\Omega$ and AC couple it to the input of your amplifier. Measure the attenuation factor of the circuit. Measure the gain over a range of frequencies, specifically capturing the gain around the cutoff frequencies. Measure input and output voltage amplitudes simultaneously when recording the gain. Record the output signal when the output amplitude is at the specified output peakpeak value, and the frequency is $1\,kHz$. Use Scope Connect to record the waveform and include it in your report. http://www.eecs.umich.edu/courses/eecs311/f09/tutorials/dso3000.html When your circuit meets all specifications, have the GSI check you off and sign your results summary sheet. L5.6 Post-Lab Analysis: Return to Cadence after completing the measurement portion of the lab. Using measured resistor values, and measured bias currents (obtained from measuring DC node voltages), determine the sources of any discrepancies between measured results and simulations. Include this analysis in your lab report. #### Report Guidelines for the report are available in the Lab 5 Report Template. You will be graded based on neatness and the quality of your report. Print Cadence schematics to an EPS or redraw them in your report (no screen captures). Print Cadence simulations to an EPS or replot in Matlab (no screen captures). Plot measured data in Excel or Matlab. Type equations. Be thorough in your analysis and discussion of your amplifier, and explain any discrepancies between measured and predicted values. http://www.eecs.umich.edu/courses/eecs311/f09/labs/lab5reporttemplate.doc ## **Grading** | Category | Percent | | | |--------------------------|---------|--|--| | Design Strategy | 10% | | | | Hand Analysis and Design | 20% | | | | Cadence Simulations | 20% | | | | Measured Circuit | 10% | | | | Specifications Met | 15% | | | | Report | 25% | | | | Total | 100% | | | Table 2. Grade weighting. # University of Michigan EECS 311: Electronic Circuits Fall 2009 Lab 5 – Results Summary | NAMES: | | | | | | | |--|--------------|-----------------|----------------------|----------------|------------|----------| | Use the followin provided to answer | | template to | record your mea | suremen | ts. Use t | he space | | Results Summary | | | | | | | | | Parameter | Spec | Measured | Units | | | | | $ v_o/v_s $ | ≥ 2000 | | V/V | | | | | f_L | ≤ 100 Hz | | Hz | | | | | f_H | 22 <i>kHz</i> | | kHz | | | | | P_{diss} | Min | | mW | | | | | I_{C1} | n/a | | mA | | | | | I_{C2} | n/a | | mA | | | | | I_{C3} | n/a | | mA | | | | | Т | able 3. Results | summary table. | | | | | Have the GSI chec
questions about you | | • | meets all specificat | ions. Be | prepared t | o answer | | Exercise | | | | Da | ate Comple | eted | | Demonstrated worki | ng amplifier | | | ····· <u> </u> | | |