
P6.1 For the circuit shown in Figure 1, derive expressions for, and find the values of \(V_{BE}, I_C \) and \(I_E \), given \(I_B = 10\mu A, \beta_F = 200, \) and \(I_S = 10^{-17} \). Ignore base-width modulation.

P6.2 The current gain of a BJT from the emitter to the collector is given by \(I_C/I_E \equiv \alpha_F \) when in the forward-active region, where \(\alpha_F = \beta_F/(1 + \beta_F) \). Use this to answer the following parts. Ignore base-width modulation.

a) Derive an expression for \(I_B/I_E \) in terms of only \(\alpha_F \).

b) We often approximate that \(I_E \approx I_C \). Given that up to a 5% error is acceptable, we can use the approximation of \(I_E \approx I_C \) by placing the following condition on \(\alpha_F \): \(\alpha_F > 0.95 \). What is the minimum value of \(\beta_F \) allowed that satisfies this condition? What is the minimum value of \(\beta_F \) if only a 1% error is acceptable?

P6.3 J&B Problem 5.2. Ignore base-width modulation.

P6.4 Find the values of base and collector currents \(I_B \) and \(I_C \) for the circuit shown in Figure 2, given that \(\alpha_F = 0.995 \). Ignore base-width modulation.
P6.5 J&B Problem 5.72.

P6.6 J&B Problem 5.82. In J&B, “Q-point” refers to the quiescent, or DC bias point. Ignore base-width modulation.

P6.7 J&B Problem 5.85. In J&B, “Q-point” refers to the quiescent, or DC bias point. Assume $V_{BE, on} = 0.7V$. Ignore base-width modulation.

P6.8 J&B Problem 5.87, part (a) only. Assume $V_{BE, on} = 0.7V$. Ignore base-width modulation.