University of Michigan EECS 311: Electronic Circuits Fall 2009

PROBLEM SET 6

Issued 10/21/2009 Due in Lecture 10/28/2009

J&B refers to the course text: "Microelectronic Circuit Design (3rd Edition)," by Richard Jaeger and Travis Blalock.

P6.1 For the circuit shown in Figure 1, derive expressions for, and find the values of V_{BE} , I_{C} and I_{E} , given $I_{B}=10\mu A$, $\beta_{F}=200$, and $I_{S}=10^{-17}$. Ignore basewidth modulation.

Figure 1.

- **P6.2** The current gain of a BJT from the emitter to the collector is given by $I_C/I_E \equiv \alpha_F$ when in the forward-active region, where $\alpha_F = \beta_F/(1+\beta_F)$. Use this to answer the following parts. Ignore base-width modulation.
- a) Derive an expression for I_B/I_E in terms of only α_F .
- b) We often approximate that $I_E \approx I_C$. Given that up to a 5% error is acceptable, we can use the approximation of $I_E \approx I_C$ by placing the following condition on α_F : $\alpha_F > 0.95$. What is the minimum value of β_F allowed that satisfies this condition? What is the minimum value of β_F if only a 1% error is acceptable?
- **P6.3** J&B Problem 5.2. Ignore base-width modulation.
- **P6.4** Find the values of base and collector currents I_B and I_C for the circuit shown in Figure 2, given that $\alpha_F=0.995$. Ignore base-width modulation.

Figure 2.

- **P6.5** J&B Problem 5.72.
- **P6.6** J&B Problem 5.82. In J&B, "Q-point" refers to the quiescent, or DC bias point. Ignore base-width modulation.
- **P6.7** J&B Problem 5.85. In J&B, "Q-point" refers to the quiescent, or DC bias point. Assume $V_{BE,on}=0.7V$. Ignore base-width modulation.
- **P6.8** J&B Problem 5.87, part (a) only. Assume $V_{BE,on}=0.7V$. Ignore base-width modulation.