University of Michigan EECS 311: Electronic Circuits Fall 2009

PROBLEM SET 7

Issued 10/28/2009 Due in Lecture 11/4/2009

J&B refers to the course text: "Microelectronic Circuit Design (3rd Edition)," by Richard Jaeger and Travis Blalock.

P7.1 The i_D vs. v_{DS} curves are given to the right for a PMOS device. Estimate the threshold voltage V_{tp} and K_p for the device. Assume $\lambda=0$ and $v_{BS}=0$.

- **P7.2** J&B Problem 4.54
- **P7.3** J&B Problem 4.56
- **P7.4** Calculate $v_{CE,SAT}$ for an NPN transistor with $I_C=1mA$, $I_B=0.1mA$, $\beta_F=100$, and $\beta_R=10$. Use Matlab to plot $v_{CE,SAT}$ and $v_{BE,ON}$ as I_B is swept from 0.1mA to 10mA with $I_C=1mA$ and $I_S=10^{-15}A$.
- **P7.5** Assume the NPN circuit below can be approximated as a linear amplifier. From the plots of $v_{BE}(t)$ and $v_{CE}(t)$ below, what are $v_{be}(t)$, V_{BE} , $v_{ce}(t)$, and V_{CE} ? Assume the signals are oscillating at a frequency ω_0 .

Page 1 of 2

P7.6 Assume the NFET circuit below can be approximated as a linear amplifier. From the plots of $v_{GS}(t)$ and $v_{DS}(t)$ below, what are $v_{gS}(t)$, V_{GS} , $v_{dS}(t)$, and V_{DS} ? Assume the signals are oscillating at a frequency ω_0 .

P7.7 Calculate the DC bias current I_D for the circuit on the right assuming $K_n = 250 \mu A/V^2$, $V_{tn} = 1V$, and $\lambda = 0$. Calculate the new value of I_D and the percentage change in I_D resulting from a 5% increase in K_n ($K_n = 262.5 \mu A/V^2$). Calculate the new value of I_D and the percentage change in I_D resulting from a 5% decrease in V_{tn} ($V_{tn} = 0.95V$).

P7.8 Calculate the DC bias current I_D for the circuit below assuming $K_p=100\mu A/V^2$, $V_{tp}=-1V$, and $\lambda=0$. Calculate the new value of I_D and the percentage change in I_D resulting from a 5% increase in K_p ($K_p=105\mu A/V^2$). Calculate the new value of I_D and the percentage change in I_D resulting from a 5% decrease in V_{tp} ($V_{tp}=-0.95V$).

